This paper proposes a high performance three-level inverter Neutral Point Clamped (NPC) structure for photovoltaic system. The proposed configuration which can boost the low voltage of photovoltaic (PV) array, can als...This paper proposes a high performance three-level inverter Neutral Point Clamped (NPC) structure for photovoltaic system. The proposed configuration which can boost the low voltage of photovoltaic (PV) array, can also convert the photovoltaic DC power into high quality AC power. Attention has been paid to the problem of neutral point potential variation. In this way, a Direct Torque Control (DTC) technique has been applied and the estimated value of the Neutral Point Potential (NPP) is used, which is calculated by motor currents. This control strategy uses the redundancy presented by the inverter for selecting appropriate switching state through a switching table to achieve the control of NPP. This study shows the effect of the stability problem of the DC voltages and good static and dynamic performances were obtained in simulation of the proposed cascade “photovoltaic cell-three-level NPC VSI-induction motor”.展开更多
This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is ca...This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is capable of mitigating source current harmonics and compensate all voltage disturbances such as voltage sags, swells, unbalances and harmonics. It is designed by the integration of series and shunt active filters (AFs) sharing a common DC bus capacitor. The DC voltage is maintained constant using proportional integral voltage controller. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt active power filters (APFs) and the power reactive theory (p-q theory) for series APFs. The shunt and series APF reference signals derived from the control algorithm and sensed signals are injected in two controllers to generate switching signals. To improve the UPQC capability, fuzzy logic techniques are introduced to control the series APF. The performances of the proposed UPQC system are evaluated in terms of power factor correction, mitigation of voltage or current harmonics and all other voltage disturbances compensation using Matlab-Simulink software and SimPowerSystem toolbox. The simulation results illustrate the performance of the proposed UPQC at the common connection point of the nonlinear load to improve the power energy quality.展开更多
文摘This paper proposes a high performance three-level inverter Neutral Point Clamped (NPC) structure for photovoltaic system. The proposed configuration which can boost the low voltage of photovoltaic (PV) array, can also convert the photovoltaic DC power into high quality AC power. Attention has been paid to the problem of neutral point potential variation. In this way, a Direct Torque Control (DTC) technique has been applied and the estimated value of the Neutral Point Potential (NPP) is used, which is calculated by motor currents. This control strategy uses the redundancy presented by the inverter for selecting appropriate switching state through a switching table to achieve the control of NPP. This study shows the effect of the stability problem of the DC voltages and good static and dynamic performances were obtained in simulation of the proposed cascade “photovoltaic cell-three-level NPC VSI-induction motor”.
文摘This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is capable of mitigating source current harmonics and compensate all voltage disturbances such as voltage sags, swells, unbalances and harmonics. It is designed by the integration of series and shunt active filters (AFs) sharing a common DC bus capacitor. The DC voltage is maintained constant using proportional integral voltage controller. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt active power filters (APFs) and the power reactive theory (p-q theory) for series APFs. The shunt and series APF reference signals derived from the control algorithm and sensed signals are injected in two controllers to generate switching signals. To improve the UPQC capability, fuzzy logic techniques are introduced to control the series APF. The performances of the proposed UPQC system are evaluated in terms of power factor correction, mitigation of voltage or current harmonics and all other voltage disturbances compensation using Matlab-Simulink software and SimPowerSystem toolbox. The simulation results illustrate the performance of the proposed UPQC at the common connection point of the nonlinear load to improve the power energy quality.