A more compact representation of the Segré chart of nuclides can be obtained replacing the isotopic neutron with the corresponding neutron excess number;a first sight inspection of all the natural isotopes is pro...A more compact representation of the Segré chart of nuclides can be obtained replacing the isotopic neutron with the corresponding neutron excess number;a first sight inspection of all the natural isotopes is produced. The resulting representation shows a built-inorder in the organization of the nuclear components into the nuclei of the natural isotopes, sustained by the relevant role of the magic numbers. The interpretation, on the identical foot, of the nuclear instability of Tc, Pm and of the elements following Bi is suggested. The present representation reminds the spheron model of the nuclear structure suggested by L. Pauling. The alpha decay paths of radioactive isotopes are shown, side by side to the low energy nuclear transmutations (LENR). Representations of the artificial isotopes of the chemical elements and of the stellar nucleosynthesis processes are also proposed.展开更多
Fertile fuel, such as thorium or depleted uranium, can be bred into fissile fuel and burnt in a breed-andburn(B&B) reactor. Modeling a full core with fertile fuel can assess the performance of a B&B reactor wi...Fertile fuel, such as thorium or depleted uranium, can be bred into fissile fuel and burnt in a breed-andburn(B&B) reactor. Modeling a full core with fertile fuel can assess the performance of a B&B reactor with exact quantitative estimates, but costs too much computation time. For simplicity, performing the recently developed neutron balance method with a zero-dimensional(0-D)model can also provide a reasonable result. Based on the0-D model, the feasibility of the B&B mode for thorium fuel in a fast reactor cooled by sodium was investigated by considering the(n, 2n) and(n, 3n) reaction rates of fuel and coolant in this work, and compared with that of depleted uranium fuel. Afterward, the performance of the same thorium-based fuel core, but cooled by helium, lead-bismuth, and FLi Be, respectively, is discussed. It is found that the(n, 2n) and(n, 3n) reactions should not be neglected for the neutron balance calculation for thorium-based fuel to sustain the B&B mode of operation.展开更多
The present study supports the provocative idea that the nucleus directs the atom’s electronic structure. With the progress of the atomic number the Atomic Molar Volume evolution of the chemical elements obeys the a...The present study supports the provocative idea that the nucleus directs the atom’s electronic structure. With the progress of the atomic number the Atomic Molar Volume evolution of the chemical elements obeys the atom’s electronic structure rules, fitting at the same time the concomitant specular evolution of the Neutron Excess addition to the nuclei. Details such as the Atomic Molar Volume contraction of the d blocks transition metals or of the Eu and Yb atomic volume anomaly of the lanthanoid metals respond to the nuclear in addition to the atom’s electronic structure. Atom’s nuclei are synthetized in the star interior and capture the electrons only after migration to the star’s periphery, to become stable atoms: nuclei are prior to atoms. Nuclear structure elements, like the 50 and 82 neutron and proton magic numbers, are geared to the noble gases, the central elements of the electronic structure.展开更多
Ideas, solely related on the nuclear shell model, fail to give an interpretation of the experimental central role of 54Xe in the asymmetric fission of actinides. The same is true for the β-delayed fission of ...Ideas, solely related on the nuclear shell model, fail to give an interpretation of the experimental central role of 54Xe in the asymmetric fission of actinides. The same is true for the β-delayed fission of 180Tl to 80Kr and 100Ru. The representation of the natural isotopes, in the Z-Neutron Excess plane, suggests the importance of the of the Neutron Excess evolution mode in the fragments of the asymmetric actinide fission and in the fragments of the β-delayed fission of 180Tl. The evolution mode of the Neutron Excess, hinged at Kr and Xe, is directed by the 50 and 82 neutron magic numbers. The present isotope representation offers a frame for the interpretation of the post fission evaporation of neutrons, higher for the AL compared to the AH fragments, a tenet in nuclear fission. Further enlightened is the functional meaning of the 50 proton magic number, marking the start of the yield rise of the AH fragments in actinide fission.展开更多
文摘A more compact representation of the Segré chart of nuclides can be obtained replacing the isotopic neutron with the corresponding neutron excess number;a first sight inspection of all the natural isotopes is produced. The resulting representation shows a built-inorder in the organization of the nuclear components into the nuclei of the natural isotopes, sustained by the relevant role of the magic numbers. The interpretation, on the identical foot, of the nuclear instability of Tc, Pm and of the elements following Bi is suggested. The present representation reminds the spheron model of the nuclear structure suggested by L. Pauling. The alpha decay paths of radioactive isotopes are shown, side by side to the low energy nuclear transmutations (LENR). Representations of the artificial isotopes of the chemical elements and of the stellar nucleosynthesis processes are also proposed.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)
文摘Fertile fuel, such as thorium or depleted uranium, can be bred into fissile fuel and burnt in a breed-andburn(B&B) reactor. Modeling a full core with fertile fuel can assess the performance of a B&B reactor with exact quantitative estimates, but costs too much computation time. For simplicity, performing the recently developed neutron balance method with a zero-dimensional(0-D)model can also provide a reasonable result. Based on the0-D model, the feasibility of the B&B mode for thorium fuel in a fast reactor cooled by sodium was investigated by considering the(n, 2n) and(n, 3n) reaction rates of fuel and coolant in this work, and compared with that of depleted uranium fuel. Afterward, the performance of the same thorium-based fuel core, but cooled by helium, lead-bismuth, and FLi Be, respectively, is discussed. It is found that the(n, 2n) and(n, 3n) reactions should not be neglected for the neutron balance calculation for thorium-based fuel to sustain the B&B mode of operation.
文摘The present study supports the provocative idea that the nucleus directs the atom’s electronic structure. With the progress of the atomic number the Atomic Molar Volume evolution of the chemical elements obeys the atom’s electronic structure rules, fitting at the same time the concomitant specular evolution of the Neutron Excess addition to the nuclei. Details such as the Atomic Molar Volume contraction of the d blocks transition metals or of the Eu and Yb atomic volume anomaly of the lanthanoid metals respond to the nuclear in addition to the atom’s electronic structure. Atom’s nuclei are synthetized in the star interior and capture the electrons only after migration to the star’s periphery, to become stable atoms: nuclei are prior to atoms. Nuclear structure elements, like the 50 and 82 neutron and proton magic numbers, are geared to the noble gases, the central elements of the electronic structure.
文摘Ideas, solely related on the nuclear shell model, fail to give an interpretation of the experimental central role of 54Xe in the asymmetric fission of actinides. The same is true for the β-delayed fission of 180Tl to 80Kr and 100Ru. The representation of the natural isotopes, in the Z-Neutron Excess plane, suggests the importance of the of the Neutron Excess evolution mode in the fragments of the asymmetric actinide fission and in the fragments of the β-delayed fission of 180Tl. The evolution mode of the Neutron Excess, hinged at Kr and Xe, is directed by the 50 and 82 neutron magic numbers. The present isotope representation offers a frame for the interpretation of the post fission evaporation of neutrons, higher for the AL compared to the AH fragments, a tenet in nuclear fission. Further enlightened is the functional meaning of the 50 proton magic number, marking the start of the yield rise of the AH fragments in actinide fission.