Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However,due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficu...Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However,due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.11991073,12305272,12335016, 11721404, and 12074251)the Strategic Priority Research Program of the CAS (Grant No.XDA25030400)the National Key R&D Program of China (Grant No.2021YFA1601700)。
文摘Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However,due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.