The system of point kinetics equations describes the time behaviour of a nuclear reactor, assuming that, during the transient, the spatial form of the flux of neutrons varies very little. This system has been largely ...The system of point kinetics equations describes the time behaviour of a nuclear reactor, assuming that, during the transient, the spatial form of the flux of neutrons varies very little. This system has been largely used in the analysis of transients, where the numerical solutions of the equations are limited by the stiffness problem that results from the different time scales of the instantaneous and delayed neutrons. Its derivation can be done directly from the neutron transport equation, from the neutron diffusion equation or through a heuristics procedure. All of them lead to the same functional form of the system of differential equations for point kinetics, but with different coefficients. However, the solution of the neutron transport equation is of little practical use as it requires the change of the existent core design systems, as used to calculate the design of the cores of nuclear reactors for different operating cycles. Several approximations can be made for the said derivation. One of them consists of disregarding the time derivative for neutron density in comparison with the remaining terms of the equation resulting from the P1 approximation of the transport equation. In this paper, we consider that the time derivative for neutron current density is not negligible in the P1 equation. Thus being, we obtained a new system of equations of point kinetics that we named as modified. The innovation of the method presented in the manuscript consists in adopting arising from the P1 equations, without neglecting the derivative of the current neutrons, to derive the modified point kinetics equations instead of adopting the Fick’s law which results in the classic point kinetics equations. The results of the comparison between the point kinetics equations, modified and classical, indicate that the time derivative for the neutron current density should not be disregarded in several of transient analysis situations.展开更多
Thermal neutron albedo has been investigated for different thicknesses of mono-material and bi-material reflectors. An equation has been obtained for a bi-material reflector by considering the neutron diffusion equati...Thermal neutron albedo has been investigated for different thicknesses of mono-material and bi-material reflectors. An equation has been obtained for a bi-material reflector by considering the neutron diffusion equation. The bi-material reflector consists of binary combinations of water, graphite, lead, and polyethylene. An experimental measurement of thermal neutron albedo has also been conducted for mono-material and bi-material reflectors by using a^(241) Am–Be(5.2 Ci) neutron source and a BF3 detector. The maximum value of thermal neutron albedo was obtained for a polyethylene–water combination(0.95 ± 0.02).展开更多
Neutron radiation experiments of optocouplers at back-streaming white neutrons(back-n)in China Spallation Neutron Source(CSNS)are presented.The displacement damages induced by neutron radiation are analyzed.The perfor...Neutron radiation experiments of optocouplers at back-streaming white neutrons(back-n)in China Spallation Neutron Source(CSNS)are presented.The displacement damages induced by neutron radiation are analyzed.The performance degradations of two types of optocouplers are compared.The degradations of current transfer ratio(CTR)are analyzed,and the mechanisms induced by radiation are also demonstrated.With the increase of the accumulated fluence,the CTR is degrading linearly with neutron fluence.The radiation hardening of optocouplers can be improved when the forward current is increased.Other parameters related to CTR degradation of optocouplers are also analyzed.展开更多
The pulsed working characteristics of the neutron tube ion source were studied experimentally. The principle and method of selecting the gas pressure and anode voltage were determined.
We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed sum of the free neutron and proton rest masses in terms of the up and down current quark masses and th...We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed sum of the free neutron and proton rest masses in terms of the up and down current quark masses and the Fermi vev to six parts in 10,000. This sum can then be solved for the separate neutron and proton masses using the neutron minus proton mass difference derived by the author in a recent, separate paper. The oppositely-signed charges of the up and down quarks are responsible for the appearance of a complex phase exp(iδ) and real rotation angle θ which leads on an independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and Maskawa (CKM). These can then be used to specify the neutron and proton mass relationships to unlimited accuracy using θ as a nucleon fitting angle deduced from empirical data. This fitting angle is then shown to be related to an invariant of the CKM mixing angles within experimental errors. Also developed is a master mass and mixing matrix which may help to interconnect all baryon and quark masses and mixing angles. The Koide generalizations developed here enable these neutron and proton mass relationships to be given a Lagrangian formulation based on neutron and proton field strength tensors that contain vacuum-amplified and current quark wavefunctions and masses. In the course of development, we also uncover new Koide relationships for the neutrinos, the up quarks, and the down quarks.展开更多
文摘The system of point kinetics equations describes the time behaviour of a nuclear reactor, assuming that, during the transient, the spatial form of the flux of neutrons varies very little. This system has been largely used in the analysis of transients, where the numerical solutions of the equations are limited by the stiffness problem that results from the different time scales of the instantaneous and delayed neutrons. Its derivation can be done directly from the neutron transport equation, from the neutron diffusion equation or through a heuristics procedure. All of them lead to the same functional form of the system of differential equations for point kinetics, but with different coefficients. However, the solution of the neutron transport equation is of little practical use as it requires the change of the existent core design systems, as used to calculate the design of the cores of nuclear reactors for different operating cycles. Several approximations can be made for the said derivation. One of them consists of disregarding the time derivative for neutron density in comparison with the remaining terms of the equation resulting from the P1 approximation of the transport equation. In this paper, we consider that the time derivative for neutron current density is not negligible in the P1 equation. Thus being, we obtained a new system of equations of point kinetics that we named as modified. The innovation of the method presented in the manuscript consists in adopting arising from the P1 equations, without neglecting the derivative of the current neutrons, to derive the modified point kinetics equations instead of adopting the Fick’s law which results in the classic point kinetics equations. The results of the comparison between the point kinetics equations, modified and classical, indicate that the time derivative for the neutron current density should not be disregarded in several of transient analysis situations.
文摘Thermal neutron albedo has been investigated for different thicknesses of mono-material and bi-material reflectors. An equation has been obtained for a bi-material reflector by considering the neutron diffusion equation. The bi-material reflector consists of binary combinations of water, graphite, lead, and polyethylene. An experimental measurement of thermal neutron albedo has also been conducted for mono-material and bi-material reflectors by using a^(241) Am–Be(5.2 Ci) neutron source and a BF3 detector. The maximum value of thermal neutron albedo was obtained for a polyethylene–water combination(0.95 ± 0.02).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11875223,11805155,and 11690043)the Chinese Academy of Sciences Strategic Pilot Science and Technology Project(Grant No.XDA15015000)+1 种基金the Innovation Foundation of Radiation Application,China(Grant No.KFZC2018040201)the Foundation of State Key Laboratory of China(Grant Nos.SKLIPR1803 and 1903Z)
文摘Neutron radiation experiments of optocouplers at back-streaming white neutrons(back-n)in China Spallation Neutron Source(CSNS)are presented.The displacement damages induced by neutron radiation are analyzed.The performance degradations of two types of optocouplers are compared.The degradations of current transfer ratio(CTR)are analyzed,and the mechanisms induced by radiation are also demonstrated.With the increase of the accumulated fluence,the CTR is degrading linearly with neutron fluence.The radiation hardening of optocouplers can be improved when the forward current is increased.Other parameters related to CTR degradation of optocouplers are also analyzed.
文摘The pulsed working characteristics of the neutron tube ion source were studied experimentally. The principle and method of selecting the gas pressure and anode voltage were determined.
文摘We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed sum of the free neutron and proton rest masses in terms of the up and down current quark masses and the Fermi vev to six parts in 10,000. This sum can then be solved for the separate neutron and proton masses using the neutron minus proton mass difference derived by the author in a recent, separate paper. The oppositely-signed charges of the up and down quarks are responsible for the appearance of a complex phase exp(iδ) and real rotation angle θ which leads on an independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and Maskawa (CKM). These can then be used to specify the neutron and proton mass relationships to unlimited accuracy using θ as a nucleon fitting angle deduced from empirical data. This fitting angle is then shown to be related to an invariant of the CKM mixing angles within experimental errors. Also developed is a master mass and mixing matrix which may help to interconnect all baryon and quark masses and mixing angles. The Koide generalizations developed here enable these neutron and proton mass relationships to be given a Lagrangian formulation based on neutron and proton field strength tensors that contain vacuum-amplified and current quark wavefunctions and masses. In the course of development, we also uncover new Koide relationships for the neutrinos, the up quarks, and the down quarks.