In this paper, we present a computational study of L-serine using ab initio molecular dynamics simulation based on density functional theory (DFT) within the ultrasoft pseudopotentials and generalized-gradient appro...In this paper, we present a computational study of L-serine using ab initio molecular dynamics simulation based on density functional theory (DFT) within the ultrasoft pseudopotentials and generalized-gradient approximation. Taking into account the intermolecular interactions, we can indeed simulate the features of the experimental results very well for L-serine zwitterions in its solid state. The vibrational spectrum of L-serine performed by DFT was in excellent agreement with our previous inelastic incoherent neutron scattering spectra measured at 20K for L-serine in the 10-200meV region on HET spectrometers at ISIS, Rutherford Appleton Laboratory.展开更多
INS (Inelastic Neutron Scattering) spectrum of methane hydrate was measured on MARI (a direct-geometry chopper spectrometer) at Ruther-ford Appleton Laboratory, UK. Compared with ice Ih, it is found that the whole...INS (Inelastic Neutron Scattering) spectrum of methane hydrate was measured on MARI (a direct-geometry chopper spectrometer) at Ruther-ford Appleton Laboratory, UK. Compared with ice Ih, it is found that the whole spectrum of methane hydrate moves toward high-energy by about 1.5 meV. Using lattice dynamical (LD) technique, computer simulations of methane hydrate were carried out. In the simulations, four potential models (BE TIP3P, TIP4P, MCY) were employed to calculate the phonon density of states (PDOS). Comparing the calculated PDOS spectrum with the experimental spectrum, it is found that BF, TIP4P, and TIP3P potential lattices give out well-separated translational and librational bands while MCY potential lattice is unstable to do so and this model is not suitable to describe hydrate system.展开更多
High-entropy alloys are characteristic of extensive atomic occupational disorder on high-symmetric lattices,differing from traditional alloys.Here,we investigate the magnetic and thermal transport properties of the pr...High-entropy alloys are characteristic of extensive atomic occupational disorder on high-symmetric lattices,differing from traditional alloys.Here,we investigate the magnetic and thermal transport properties of the prototype face-centered-cubic high-entropy alloy CrMnFeCoNi by combining physical properties measurements and neutron scattering.Direct-current and alternating-current magnetizations measurements indicate a mictomagnetic behavior with coexisting antiferromagnetic and ferromagnetic interactions below room temperature and three anomalies are found at about 80,40,and 20 K,which are related to the paramagnetic to antiferromagnetic transition,the antiferromagnetic to ferromagnetic transition,and the spin freezing,respectively.The electrical and thermal conductivities are significantly reduced compared to Ni,and the temperature dependence of lattice thermal conductivity exhibits a glasslike plateau.Inelastic neutron scattering measurements suggest weak anharmonicity so that the thermal transport is expected to be dominated by the defect scattering.展开更多
The Boson peak (BP) of deeply cooled confined water is studied by using inelastic neutron scattering (INS) in a large interval of the (P, T) phase plane. By taking into account the different behavior of such a c...The Boson peak (BP) of deeply cooled confined water is studied by using inelastic neutron scattering (INS) in a large interval of the (P, T) phase plane. By taking into account the different behavior of such a collective vibrational mode in both strong and fragile glasses as well as in glass-forming materials, we were able to determine the Widom line that characterizes supercooled bulk water within the frame of the liquid-liquid phase transition (LLPT) hypothesis. The peak frequency and width of the BP correlated with the water polymorphism of the LLPT scenario, allowing us to distinguish the "low-density liquid" (LDL) and "high-density liquid" (HDL) phases in deeply cooled bulk water. Moreover, the BP properties afford a further confirmation of the Widom line temperature Tw as the (P, T) locus in which the local structure of water transforms from a predominately LDL form to a predominately HDL form.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10228511) and the State Key Development Program for Basic Research of China (Grant No 001CB610504).
文摘In this paper, we present a computational study of L-serine using ab initio molecular dynamics simulation based on density functional theory (DFT) within the ultrasoft pseudopotentials and generalized-gradient approximation. Taking into account the intermolecular interactions, we can indeed simulate the features of the experimental results very well for L-serine zwitterions in its solid state. The vibrational spectrum of L-serine performed by DFT was in excellent agreement with our previous inelastic incoherent neutron scattering spectra measured at 20K for L-serine in the 10-200meV region on HET spectrometers at ISIS, Rutherford Appleton Laboratory.
基金supported by the National Natural Science Foundation of China (Grant No. 10474085)
文摘INS (Inelastic Neutron Scattering) spectrum of methane hydrate was measured on MARI (a direct-geometry chopper spectrometer) at Ruther-ford Appleton Laboratory, UK. Compared with ice Ih, it is found that the whole spectrum of methane hydrate moves toward high-energy by about 1.5 meV. Using lattice dynamical (LD) technique, computer simulations of methane hydrate were carried out. In the simulations, four potential models (BE TIP3P, TIP4P, MCY) were employed to calculate the phonon density of states (PDOS). Comparing the calculated PDOS spectrum with the experimental spectrum, it is found that BF, TIP4P, and TIP3P potential lattices give out well-separated translational and librational bands while MCY potential lattice is unstable to do so and this model is not suitable to describe hydrate system.
基金financially supported by the Liaoning Revitalization Talents Program(No.XLYC1807122)the National Natural Science Foundation of China(Nos.11804346,12005243,and 51771197)+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(No.ZDBS-LY-JSC002)the Ministry of Science and Technology of China(No.2020YFA0406002)
文摘High-entropy alloys are characteristic of extensive atomic occupational disorder on high-symmetric lattices,differing from traditional alloys.Here,we investigate the magnetic and thermal transport properties of the prototype face-centered-cubic high-entropy alloy CrMnFeCoNi by combining physical properties measurements and neutron scattering.Direct-current and alternating-current magnetizations measurements indicate a mictomagnetic behavior with coexisting antiferromagnetic and ferromagnetic interactions below room temperature and three anomalies are found at about 80,40,and 20 K,which are related to the paramagnetic to antiferromagnetic transition,the antiferromagnetic to ferromagnetic transition,and the spin freezing,respectively.The electrical and thermal conductivities are significantly reduced compared to Ni,and the temperature dependence of lattice thermal conductivity exhibits a glasslike plateau.Inelastic neutron scattering measurements suggest weak anharmonicity so that the thermal transport is expected to be dominated by the defect scattering.
文摘The Boson peak (BP) of deeply cooled confined water is studied by using inelastic neutron scattering (INS) in a large interval of the (P, T) phase plane. By taking into account the different behavior of such a collective vibrational mode in both strong and fragile glasses as well as in glass-forming materials, we were able to determine the Widom line that characterizes supercooled bulk water within the frame of the liquid-liquid phase transition (LLPT) hypothesis. The peak frequency and width of the BP correlated with the water polymorphism of the LLPT scenario, allowing us to distinguish the "low-density liquid" (LDL) and "high-density liquid" (HDL) phases in deeply cooled bulk water. Moreover, the BP properties afford a further confirmation of the Widom line temperature Tw as the (P, T) locus in which the local structure of water transforms from a predominately LDL form to a predominately HDL form.