A special neutron diagnostic system is proposed that facilitates the measurement of neutron fluxes and spectra in the neutronics and tritium production-test blanket module (NTTBM) without interrupting the operation ...A special neutron diagnostic system is proposed that facilitates the measurement of neutron fluxes and spectra in the neutronics and tritium production-test blanket module (NTTBM) without interrupting the operation of the International Thermal-nuclear Experimental Reactor (ITER), for studying the multiplication rate in the neutron multiplier and breeding ratio of tritium in the breeder. This system includes an encapsulated foil activation system, micro-fission chamber detectors (MFC), and a compact neutron spectrometer using a natural diamond detector (NDD). A helium coolant loop with a reasonable diameter is designed carefully for every measurement channel that ensures that the neutron detectors and preamplifiers would work well under a high temperature scenario and that the filling rates of the neutron multiplier (beryllium pebble) and tritium breeder material (Li4SiO4) would not decrease excessively (the expected value〉80%) due to the dimensions of the helium coolant loop.展开更多
基金National Natural Science Foundation of China(No.10175021)
文摘A special neutron diagnostic system is proposed that facilitates the measurement of neutron fluxes and spectra in the neutronics and tritium production-test blanket module (NTTBM) without interrupting the operation of the International Thermal-nuclear Experimental Reactor (ITER), for studying the multiplication rate in the neutron multiplier and breeding ratio of tritium in the breeder. This system includes an encapsulated foil activation system, micro-fission chamber detectors (MFC), and a compact neutron spectrometer using a natural diamond detector (NDD). A helium coolant loop with a reasonable diameter is designed carefully for every measurement channel that ensures that the neutron detectors and preamplifiers would work well under a high temperature scenario and that the filling rates of the neutron multiplier (beryllium pebble) and tritium breeder material (Li4SiO4) would not decrease excessively (the expected value〉80%) due to the dimensions of the helium coolant loop.