This research paper deals with the boundary and initial value problems for the Bratu-type model by using the New Improved Variational Homotopy Perturbation Method. The New Method does not require discritization, linea...This research paper deals with the boundary and initial value problems for the Bratu-type model by using the New Improved Variational Homotopy Perturbation Method. The New Method does not require discritization, linearization or any restrictive assumption of any form in providing analytical or approximate solutions to linear and nonlinear equation without the integral related with nonlinear term. Theses virtues make it to be reliable and its efficiency is demonstrated with numerical examples.展开更多
In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomi...In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].展开更多
In this article, the application of variational homotopy perturbation method is applied to solve Benjamin-Bona-Mahony equation. Then, we obtain the numerical solution of BBM equation using the initial condition. Compa...In this article, the application of variational homotopy perturbation method is applied to solve Benjamin-Bona-Mahony equation. Then, we obtain the numerical solution of BBM equation using the initial condition. Comparison with Adomian’s decomposition method, homotopy perturbation method, and with the exact solution shows that VHPM is more effective and accurate than ADM and HPM, and is reliable and manageable for this type of equation.展开更多
The main aim of the paper is to examine the concentration of the longitudinal dispersion phenomenon arising in fluid flow through porous media. These phenomenon yields a partial differential equation namely Burger’s ...The main aim of the paper is to examine the concentration of the longitudinal dispersion phenomenon arising in fluid flow through porous media. These phenomenon yields a partial differential equation namely Burger’s equation, which is solved by mixture of the new integral transform and the homotopy perturbation method under suitable conditions and the standard assumption. This method provides an analytical approximation in a rapidly convergent sequence with in exclusive manner computed terms. Its rapid convergence shows that the method is trustworthy and introduces a significant improvement in solving nonlinear partial differential equations over existing methods. It is concluded that the behaviour of concentration in longitudinal dispersion phenomenon is decreases as distance x is increasing with fixed time t > 0 and slightly increases with time t.展开更多
In this paper, a Variational homotopy perturbation method is proposed to solve nonlinear Riccati differential equation. By combining the Variational Iteration Method and the Homotopy Perturbation Method, this techniqu...In this paper, a Variational homotopy perturbation method is proposed to solve nonlinear Riccati differential equation. By combining the Variational Iteration Method and the Homotopy Perturbation Method, this technique possesses a fast convergence rate with high accuracy. The results reveal that the proposed method is very effective and simple.展开更多
This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation contain...This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation containing a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. Approximate analytical expression of concentration of oxygen is derived using new Homotopy perturbation method for various boundary conditions. The validity of the obtained solutions is verified by the numerical results.展开更多
In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hy...In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. The technique finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. Comparison of the approximate solution with the exact one reveals that the method is very effective. It provides more realistic series solutions that converge very rapidly for nonlinear real physical problems.展开更多
In this paper, variational iteration method and He-Laplace method are used to solve the nonlinear ordinary and partial differential equations. Laplace transformation with the homotopy perturbation method is called He-...In this paper, variational iteration method and He-Laplace method are used to solve the nonlinear ordinary and partial differential equations. Laplace transformation with the homotopy perturbation method is called He-Laplace method. A comparison is made among variational iteration method and He-Laplace. It is shown that, in He-Laplace method, the nonlinear terms of differential equation can be easily handled by the use of He’s polynomials and provides better results.展开更多
In this paper,the modified integral equation,namely,Elzaki transformation coupled with the Adomian decomposition method called Elzaki Adomian decomposition method(EADM)is used to investigate the solution of time-fract...In this paper,the modified integral equation,namely,Elzaki transformation coupled with the Adomian decomposition method called Elzaki Adomian decomposition method(EADM)is used to investigate the solution of time-fractional fourth-order parabolic partial differential equations(PDEs)with variable coefficients.The introduced method is used to solve two models of the proposed problem,the analytical and approximate solutions of the models are obtained.The outcomes illustrate that the proposed technique is a highly accurate,and facilitates the process of solving differential equations by comparing it,with the exact solution and those obtained by the variation iteration method(VIM)and Laplace homotopy perturbation method(LHPM).展开更多
In this paper, we found the numerical solution of three-dimensional coupled Burgers’ Equations by using more efficient methods: Laplace Adomian decomposition method, Laplace transform homotopy perturbation method, va...In this paper, we found the numerical solution of three-dimensional coupled Burgers’ Equations by using more efficient methods: Laplace Adomian decomposition method, Laplace transform homotopy perturbation method, variational iteration method, variational iteration decomposition method and variational iteration homotopy perturbation method. Example is examined to validate the efficiency and accuracy of these methods and they reduce the size of computation without the restrictive assumption to handle nonlinear terms and it gives the solutions rapidly.展开更多
Motion of a vertically falling nano droplet in incompressible Newtonian media with initial velocity is investigated. The instantaneous velocity and acceleration are carried out by using the variational iteration metho...Motion of a vertically falling nano droplet in incompressible Newtonian media with initial velocity is investigated. The instantaneous velocity and acceleration are carried out by using the variational iteration method(VIM) and homotopy perturbation method(HPM), which are analytical solution techniques. The obtained results are compared with Runge–Kutta method in order to verify the accuracy of the proposed methods. The results show that, the analytical solutions are in good agreement with each other and with the numerical solution. Also, the effects of sphericity(?) on the velocity and acceleration profiles of the nano droplet are explained. Moreover, the results demonstrate that the VIM-Padé and HPM-Padé are very effective in generating analytical solutions for even highly nonlinear problems.展开更多
Chemotaxis-haptotaxis model of cancer invasion with tissue remodeling is one of the important PDE’s systems in medicine, mathematics and biomathematics. In this paper we find the solution of chemotaxis-haptotaxis mod...Chemotaxis-haptotaxis model of cancer invasion with tissue remodeling is one of the important PDE’s systems in medicine, mathematics and biomathematics. In this paper we find the solution of chemotaxis-haptotaxis model of cancer invasion using the new homotopy perturbation method (NHPM). Then by comparing some estimated numerical result with simulation laboratory result, it shows that NHPM is an efficient and exact way for solving cancer PDE’s system.展开更多
In this article, variational iteration method (VIM) and homotopy perturbation method (HPM) solve the nonlinear initial value problems of first-order fractional quadratic integro-differential equations (FQIDEs). We use...In this article, variational iteration method (VIM) and homotopy perturbation method (HPM) solve the nonlinear initial value problems of first-order fractional quadratic integro-differential equations (FQIDEs). We use the Caputo sense in this article to describe the fractional derivatives. The solutions of the problems are derived by infinite convergent series, and the results show that both methods are most convenient and effective.展开更多
A theoretical model for the non steady-state response of a pH-based potentiometric biosensor immobilizing organophosphorus hydrolase (OPH) is discussed. The model is based on a system of five coupled nonlinear reactio...A theoretical model for the non steady-state response of a pH-based potentiometric biosensor immobilizing organophosphorus hydrolase (OPH) is discussed. The model is based on a system of five coupled nonlinear reaction-diffusion equations under non steady-state conditions for enzyme reactions occurring in potentiometric biosensor that describes the concentration of substrate and hydrolysis products within the membrane. New approximate analytical expressions for the concentration of the substrate (organophosphorus pesticides (OPs)) and products are derived for all values of Thiele modulus and buffer concentration using new approach of homotopy perturbation method. The analytical results are also compared with numerical ones and a good agreement is obtained. The obtained results are valid for the whole solution domain.展开更多
In this paper, mathematical model of Martens and Hall (Analytical chemistry 66, 2763-2770 (1994)) for an immobilized oxidase enzyme electrode is discussed. The model involves the system of non-linear reaction diffusio...In this paper, mathematical model of Martens and Hall (Analytical chemistry 66, 2763-2770 (1994)) for an immobilized oxidase enzyme electrode is discussed. The model involves the system of non-linear reaction diffusion equations under the steady state conditions. A simple and closed-form of approximate analytical expressions for the concentrations of the immobilization of three enzyme substrates has been derived by solving the system of non-linear reaction diffusion equations using new approach of homotopy perturbation method. Approximate polynomial expression of concentration of substrate, oxygen and oxidized mediator and current was obtained in terms of the Thiele moduli and the small values of parameters B<sub>s</sub>, B<sub>o</sub> and B<sub>m</sub> (normalized surface concentration of substrate, oxygen and oxidized mediator). Furthermore, in this work the numerical simulation of the problem is also reported using Matlab program. An agreement between analytical expressions and numerical results is noted.展开更多
文摘This research paper deals with the boundary and initial value problems for the Bratu-type model by using the New Improved Variational Homotopy Perturbation Method. The New Method does not require discritization, linearization or any restrictive assumption of any form in providing analytical or approximate solutions to linear and nonlinear equation without the integral related with nonlinear term. Theses virtues make it to be reliable and its efficiency is demonstrated with numerical examples.
文摘In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].
文摘In this article, the application of variational homotopy perturbation method is applied to solve Benjamin-Bona-Mahony equation. Then, we obtain the numerical solution of BBM equation using the initial condition. Comparison with Adomian’s decomposition method, homotopy perturbation method, and with the exact solution shows that VHPM is more effective and accurate than ADM and HPM, and is reliable and manageable for this type of equation.
文摘The main aim of the paper is to examine the concentration of the longitudinal dispersion phenomenon arising in fluid flow through porous media. These phenomenon yields a partial differential equation namely Burger’s equation, which is solved by mixture of the new integral transform and the homotopy perturbation method under suitable conditions and the standard assumption. This method provides an analytical approximation in a rapidly convergent sequence with in exclusive manner computed terms. Its rapid convergence shows that the method is trustworthy and introduces a significant improvement in solving nonlinear partial differential equations over existing methods. It is concluded that the behaviour of concentration in longitudinal dispersion phenomenon is decreases as distance x is increasing with fixed time t > 0 and slightly increases with time t.
文摘In this paper, a Variational homotopy perturbation method is proposed to solve nonlinear Riccati differential equation. By combining the Variational Iteration Method and the Homotopy Perturbation Method, this technique possesses a fast convergence rate with high accuracy. The results reveal that the proposed method is very effective and simple.
文摘This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation containing a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. Approximate analytical expression of concentration of oxygen is derived using new Homotopy perturbation method for various boundary conditions. The validity of the obtained solutions is verified by the numerical results.
文摘In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. The technique finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. Comparison of the approximate solution with the exact one reveals that the method is very effective. It provides more realistic series solutions that converge very rapidly for nonlinear real physical problems.
文摘In this paper, variational iteration method and He-Laplace method are used to solve the nonlinear ordinary and partial differential equations. Laplace transformation with the homotopy perturbation method is called He-Laplace method. A comparison is made among variational iteration method and He-Laplace. It is shown that, in He-Laplace method, the nonlinear terms of differential equation can be easily handled by the use of He’s polynomials and provides better results.
文摘In this paper,the modified integral equation,namely,Elzaki transformation coupled with the Adomian decomposition method called Elzaki Adomian decomposition method(EADM)is used to investigate the solution of time-fractional fourth-order parabolic partial differential equations(PDEs)with variable coefficients.The introduced method is used to solve two models of the proposed problem,the analytical and approximate solutions of the models are obtained.The outcomes illustrate that the proposed technique is a highly accurate,and facilitates the process of solving differential equations by comparing it,with the exact solution and those obtained by the variation iteration method(VIM)and Laplace homotopy perturbation method(LHPM).
文摘In this paper, we found the numerical solution of three-dimensional coupled Burgers’ Equations by using more efficient methods: Laplace Adomian decomposition method, Laplace transform homotopy perturbation method, variational iteration method, variational iteration decomposition method and variational iteration homotopy perturbation method. Example is examined to validate the efficiency and accuracy of these methods and they reduce the size of computation without the restrictive assumption to handle nonlinear terms and it gives the solutions rapidly.
文摘Motion of a vertically falling nano droplet in incompressible Newtonian media with initial velocity is investigated. The instantaneous velocity and acceleration are carried out by using the variational iteration method(VIM) and homotopy perturbation method(HPM), which are analytical solution techniques. The obtained results are compared with Runge–Kutta method in order to verify the accuracy of the proposed methods. The results show that, the analytical solutions are in good agreement with each other and with the numerical solution. Also, the effects of sphericity(?) on the velocity and acceleration profiles of the nano droplet are explained. Moreover, the results demonstrate that the VIM-Padé and HPM-Padé are very effective in generating analytical solutions for even highly nonlinear problems.
文摘Chemotaxis-haptotaxis model of cancer invasion with tissue remodeling is one of the important PDE’s systems in medicine, mathematics and biomathematics. In this paper we find the solution of chemotaxis-haptotaxis model of cancer invasion using the new homotopy perturbation method (NHPM). Then by comparing some estimated numerical result with simulation laboratory result, it shows that NHPM is an efficient and exact way for solving cancer PDE’s system.
文摘In this article, variational iteration method (VIM) and homotopy perturbation method (HPM) solve the nonlinear initial value problems of first-order fractional quadratic integro-differential equations (FQIDEs). We use the Caputo sense in this article to describe the fractional derivatives. The solutions of the problems are derived by infinite convergent series, and the results show that both methods are most convenient and effective.
文摘A theoretical model for the non steady-state response of a pH-based potentiometric biosensor immobilizing organophosphorus hydrolase (OPH) is discussed. The model is based on a system of five coupled nonlinear reaction-diffusion equations under non steady-state conditions for enzyme reactions occurring in potentiometric biosensor that describes the concentration of substrate and hydrolysis products within the membrane. New approximate analytical expressions for the concentration of the substrate (organophosphorus pesticides (OPs)) and products are derived for all values of Thiele modulus and buffer concentration using new approach of homotopy perturbation method. The analytical results are also compared with numerical ones and a good agreement is obtained. The obtained results are valid for the whole solution domain.
文摘In this paper, mathematical model of Martens and Hall (Analytical chemistry 66, 2763-2770 (1994)) for an immobilized oxidase enzyme electrode is discussed. The model involves the system of non-linear reaction diffusion equations under the steady state conditions. A simple and closed-form of approximate analytical expressions for the concentrations of the immobilization of three enzyme substrates has been derived by solving the system of non-linear reaction diffusion equations using new approach of homotopy perturbation method. Approximate polynomial expression of concentration of substrate, oxygen and oxidized mediator and current was obtained in terms of the Thiele moduli and the small values of parameters B<sub>s</sub>, B<sub>o</sub> and B<sub>m</sub> (normalized surface concentration of substrate, oxygen and oxidized mediator). Furthermore, in this work the numerical simulation of the problem is also reported using Matlab program. An agreement between analytical expressions and numerical results is noted.