The anti-synchronization between different chaotic/hyperchaotic systems with fully unknown parameters is considered in detail. Based on Lyapunov stability theory, the adaptive control schemes and parameter update rule...The anti-synchronization between different chaotic/hyperchaotic systems with fully unknown parameters is considered in detail. Based on Lyapunov stability theory, the adaptive control schemes and parameter update rules are designed in this paper. Two numerical examples show the effectiveness and feasibility of the proposed method.展开更多
This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. T...This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. The proposed system exhibits various dynamical behaviors including chaotic, periodic, stable nature, and coexistence of various attractors. Numerous theoretical and numerical methods are used for the analyses of this system. The chaotic behavior of the new system is validated using circuit implementation. Further, the synchronization of the proposed systems is shown by designing an adaptive integrator backstepping controller. Numerical simulation validates the synchronization strategy.展开更多
A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can gener...A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincare maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.展开更多
A new stability theory of nonlinear dynamic systems is proposed, and a novel adaptive synchronisation method is presented for fractional-order chaotic and hyperchaotic systems based on the theory described in this pap...A new stability theory of nonlinear dynamic systems is proposed, and a novel adaptive synchronisation method is presented for fractional-order chaotic and hyperchaotic systems based on the theory described in this paper. In comparison with previous methods, not only is the present control scheme simple but also it employs only one control strength, converges very fast, and it is also suitable for a large class of fractional-order chaotic and hyperchaotic systems. Moreover, this scheme is analytical and simple to implement in practice. Numerical and circuit simulations are used to validate and demonstrate the effectiveness of the method.展开更多
基金Supported by National Natural Science Foundation of China(No.60874113)
文摘The anti-synchronization between different chaotic/hyperchaotic systems with fully unknown parameters is considered in detail. Based on Lyapunov stability theory, the adaptive control schemes and parameter update rules are designed in this paper. Two numerical examples show the effectiveness and feasibility of the proposed method.
文摘This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. The proposed system exhibits various dynamical behaviors including chaotic, periodic, stable nature, and coexistence of various attractors. Numerous theoretical and numerical methods are used for the analyses of this system. The chaotic behavior of the new system is validated using circuit implementation. Further, the synchronization of the proposed systems is shown by designing an adaptive integrator backstepping controller. Numerical simulation validates the synchronization strategy.
文摘A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincare maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.
基金supported by the Natural Science Foundation of Hebei Province of China (Grant No. A2008000136)
文摘A new stability theory of nonlinear dynamic systems is proposed, and a novel adaptive synchronisation method is presented for fractional-order chaotic and hyperchaotic systems based on the theory described in this paper. In comparison with previous methods, not only is the present control scheme simple but also it employs only one control strength, converges very fast, and it is also suitable for a large class of fractional-order chaotic and hyperchaotic systems. Moreover, this scheme is analytical and simple to implement in practice. Numerical and circuit simulations are used to validate and demonstrate the effectiveness of the method.