Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-ginee...Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-gineering company, the localization of technicalequipment, charge for SO2 emission andnormalized management, this article makes acomprehensive analysis and puts forwardconstructive suggestions. These will providesome references for those being engaged in fluegas desulfurization in coal-fired power plants.[展开更多
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ...The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.展开更多
Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate ...Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.展开更多
On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to coll...On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to collect particle samples.Gas chromatography-flame ionization detector/mass spectrometry and gas chromatography-mass spectrometry was the offline analysis method.We found that the total mass concentration of the tested 102 VOC species at the outlet of wet flue gas desulfuration device was(13456±47)μg·m^(-3),which contained aliphatic hydrocarbons(57.9%),aromatic hydrocarbons(26.8%),halogen-containing species(14.5%),and a small amount of oxygen-containing and nitrogencontaining species.The most abundant species were 1-hexene,n-hexane and 2-methylpentane.The top ten species in terms of mass fraction(with a total mass fraction of 75.3%)were mainly hydrocarbons with a carbon number of 6 or higher and halogenated hydrocarbons with a lower carbon number.The mass concentration of VOC species in the particle phase was significantly lower than that in the gas phase.The change of VOC mass concentrations along the air pollution control devices indicates that conventional pollutant control equipment had a limited effect on VOC reduction.Ozone formation potential calculations showed that aromatic hydrocarbons contributed the highest ozone formation(46.4%)due to their relatively high mass concentrations and MIR(maximum increment reactivity)values.展开更多
Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 cap...Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 capture technology has been paid great attention. However, when connecting the CO2 capture process with a coal-fired power plant, the huge energy and efficiency penalty caused by CO2 capture has become a serious problem for its application. Thus, it is of great significance to reduce the related energy consumption. Based on an existing coal-fired power plant, this paper proposes a new way for the decarburized retrofitting of the coal-fired power plant, which helps to improve the overall efficiency of the power plant with less energy and efficiency penalty. The decarburized retrofitting scheme proposed will provide a new route for the CO2 capture process in China.展开更多
In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic ...In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic precipitator(WESP).In this work,particulate matter with aerodynamic diameter less than 10μm(PM_(10))and sulfur oxides(SO_(x))have been studied in a coal-fired power plant.The plant is equipped with selective catalytic reduction,electrostatic precipitator,WFGD,WESP.The results show that the PM_(10)removal efficiencies in WFGD and WESP are 54.34%and 50.39%,respectively,and the overall removal efficiency is 77.35%.WFGD and WESP have effects on the particle size distribution.After WFGD,the peak of particles shifts from 1.62 to 0.95μm,and the mass concentration of fine particles with aerodynamic diameter less than 0.61μm increases.After WESP,the peak of particle size shifts from 0.95 to 1.61μm.The differences are due to the agglomeration and growth of small particles.The SO_(3)mass concentration increases after SCR,but WFGD has a great influence on SO_(x)with the efficiency of 96.56%.WESP can remove SO_(x),but the efficiency is 20.91%.The final emission factors of SO_(2),SO_(3),PM_(1),PM_(2.5)and PM_(10)are 0.1597,0.0450,0.0154,0.0267 and 0.0215(kg·t^(−1)),respectively.Compared with the research results without ultra-low emission retrofit,the emission factors are reduced by 1~2 orders of magnitude,and the emission control level of air pollutants is greatly improved.展开更多
The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The enviro...The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The environmental management of hazardous waste in coal-fired power plants started late, and there are many problems in the construction and management of their storage facilities. In this paper, taking eight typical coal-fired power plants as examples, the present problems of hazardous waste storage facilities in coal-fired power plants are analyzed, and corresponding countermeasures are put forward to solve the main common problems.展开更多
With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China an...With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China and abroad. Sooner or later, the integration of CO_2 capture and storage (CCS) facility with coal-fired power plant will be inevitably put on the agenda of developers.展开更多
Xiangfan Coal-fired Power Plant, a key energy construction project matched with Three Gorges Project, approved by the State Council. formally started to build in the suburb of Xiangfan City, Hubei Province on November...Xiangfan Coal-fired Power Plant, a key energy construction project matched with Three Gorges Project, approved by the State Council. formally started to build in the suburb of Xiangfan City, Hubei Province on November 29, 1996.展开更多
For Finland, carbon dioxide mineralisation was identified as the only option for CCS (carbon capture and storage) application. Unfortunately it has not been embraced by the power sector. One interesting source-sink ...For Finland, carbon dioxide mineralisation was identified as the only option for CCS (carbon capture and storage) application. Unfortunately it has not been embraced by the power sector. One interesting source-sink combination, however, is formed by magnesium silicate resources at Vammala, located -85 km east of the 565 MWe coal-fired Meri-Pori Power Plant on the country's southwest coast. This paper assesses mineral sequestration of Meri-Pori power plant CO2, using Vammala mineral resources and the mineralisation process under development at Abo Akademi University. That process implies Mg(OH)E production from magnesium silicate-based rock, followed by gas/solid carbonation of the Mg(OH)2 in a pressurised fluidised bed. Reported are results on experimental work, i.e., Mg(OH)2 production, with rock from locations close to Meri-Pori. Results suggest a total CO2 fixation capacity -50 Mt CO2 for the Vammala site, although production of Mg(OH)2 from rock from the site is challenging. Finally, as mineralisation could be directly applied to flue gases without CO2 pre-capture, we report from experimental work on carbonation of Mg(OH)2 with CO2 and CO2-SO2-O2 gas mixtures. Results show that SO2 readily reacts with Mg(OH)2, providing an opportunity to simultaneously capture SO2 and CO2, which could make separate flue gas desulphurisation redundant.展开更多
In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and mor...In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.展开更多
Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental probl...Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental problems.This paper focuses on near-zero emission technologies and applications for clean coal-fired power.The long-term operation states of near-zero emission units were evaluated,and synergistic and special mercury(Hg)control technologies were researched.The results show that the principle technical route of near-zero emission,which was applied to 101 of China’s coal-fired units,has good adaptability to coal properties.The emission concentrations of particulate matter(PM),SO2,and NOx were below the emission limits of gas-fired power plants and the compliance rates of the hourly average emission concentrations reaching near-zero emission in long-term operation exceeded 99%.With the application of near-zero emission technologies,the generating costs increased by about 0.01 CNY∙(kW∙h)-1.However,the total emissions of air pollutants decreased by about 90%,resulting in effective improvement of the ambient air quality.Furthermore,while the Hg emission concentrations of the near-zero emission units ranged from 0.51 to 2.89μg∙m^-3,after the modified fly ash(MFA)special Hg removal system was applied,Hg emission concentration reached as low as 0.29μg∙m^-3.The operating cost of this system was only 10%-15%of the cost of mainstream Hg removal technology using activated carbon injection.Based on experimental studies carried out in a 50000 m^3∙h^-1 coal-fired flue gas pollutant control pilot platform,the interaction relationships of multi-pollutant removal were obtained and solutions were developed for emissions reaching different limits.A combined demonstration application for clean coal-fired power,with the new“1123”eco-friendly emission limits of 1,10,20 mg∙m^-3,and 3μg∙m^-3,respectively,for PM,SO2,NOx,and Hg from near-zero emission coal-fired power were put forward and realized,providing engineering and technical support for the national enhanced pollution emission standards.展开更多
On March 25 1996, the electron beam flue gas desulfurization demonstration project of Chengdu Cogeneration Power Plant started formal construction This is at present the largest electron beam desulfurization project i...On March 25 1996, the electron beam flue gas desulfurization demonstration project of Chengdu Cogeneration Power Plant started formal construction This is at present the largest electron beam desulfurization project in power plants in the world, and is jointly constructed by Sichuan Electric Power Bureau and the EBARA Works of Japan, This is an important cooperation project in environment protection between展开更多
In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,...In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,in the process of researching new energy farms,there are some problems when they are integrated into the power system.In order to ensure the stability of new energy power plants,it is necessary to conduct an in-depth analysis of the grid connection technology of new energy farms.In the study,it is necessary to learn about the specific problems of the stability of the grid connection of new energy power plants,and to clarify the specific application of the grid connection technology of new energy power plants from the application principle and advantages of the grid connection technology of new energy power plants.Through simulation experiments,the positive effect of grid connection technology of new energy power plants in improving the stability of power systems was determined.展开更多
Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power...Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power plants on soil microbial communities have received little attention through atmospheric pollutant deposition and coal-stacking.Here,we collected the samples of power plant soils(PS),coal-stacking soils(CSS)and agricultural soils(AS)around three coal-fired power plants and background control soils(BG)in Huainan,a typical mineral resource-based city in East China,and investigated the microbial diversity and community structures through a high-throughput sequencing technique.Coal-stacking significantly increased(p<0.05)the contents of total carbon,total nitrogen,total sulfur and Mo in the soils,whereas the deposition of atmospheric pollutants enhanced the levels of V,Cu,Zn and Pb.Proteobacteria,Actinobacteria,Thaumarchaeota,Thermoplasmata,Ascomycota and Basidiomycota were the dominant taxa in all soils.The bacterial community showed significant differences(p<0.05)among PS,CSS,AS and BG,whereas archaeal and fungal communities showed significant differences(p<0.01)according to soil samples around three coal-fired power plants.The predominant environmental variables affecting soil bacterial,archaeal and fungal communities were Mo-TN-TS,Cu-V-Mo,and organic matter(OM)-Mo,respectively.Certain soil microbial genera were closely related to multiple key factors associated with stacking coal and heavy metal deposition from power plants.This study provided useful insight into better understanding of the relationships between soil microbial communities and long-term disturbances from coal-fired power plants.展开更多
China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies o...China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies on substantial electricity generated by CFPPs,resulting in indirect CO_(2) emissions.The extent of CO_(2)emissions caused by APCDs in China remains uncertain.Here,using a plant-level dataset,we quantified the CO_(2)emissions associated with electricity consumption by APCDs in China's CFPPs.Our findings reveal a significant rise in CO_(2)emissions attributed to APCDs,increasing from 1.48 Mt in 2000 to 51.7 Mt in 2020.Moreover,the contribution of APCDs to total CO_(2)emissions from coal-fired power generation escalated from 0.12%to 1.19%.Among the APCDs,desulfurization devices accounted for approximately 80%of the CO_(2)emissions,followed by dust removal and denitration devices.Scenario analysis indicates that the lifespan of CFPPs will profoundly impact future emissions,with Nei Mongol,Shanxi,and Shandong provinces projected to exhibit the highest emissions.Our study emphasizes the urgent need for a comprehensive assessment of environmental policies and provides valuable insights for the integrated management of air pollutants and carbon emissions in CFPPs.展开更多
The objective of this paper is the valuation of radiological health effects of Yatagan Power Plant. To this aim the radiation dose calculations are carried out for the population living within 80 km radius of the plan...The objective of this paper is the valuation of radiological health effects of Yatagan Power Plant. To this aim the radiation dose calculations are carried out for the population living within 80 km radius of the plant. The average of the maximum measured specific isotopes 238U, 232Th and 226Ra in the flying ash samples are considered as radioactive sources. Based on the dose calculations, first the stochastic health effects and then monetary health effects are estimated. The estimated total collective dose and economic value of the pre-dicted health effects are 0.3098 man Sv/y and 14791 US$/y respectively. The results obtained from the dose calculations are lower than the limits of International Commission of Radiation Protection (ICRP) and it does not pose any risk for public health. Monetary value of health risks is also negligible in comparison to the av-erage yearly sales revenue of the plant which is 250 million US$.展开更多
Some types of renewable energy have been experiencing rapid evolution in recent decades, notably among the energies associated with the oceans, such as wave and current energies. The development of new energy conversi...Some types of renewable energy have been experiencing rapid evolution in recent decades, notably among the energies associated with the oceans, such as wave and current energies. The development of new energy conversion technologies for these two forms of energy has been offering a large number of equipment configurations and plant geometries for energy conversion. This process can be implemented aiming at the result of feasibility studies in places with energy potentials, establishing minimum feasibility limits to be reached. This work aims to contribute in this sense with a feasibility study of a system with ocean wave power plants and with socio-current power plants to be operated on the southern coast of Brazil. This study evaluates a hybrid system with contributions from energy supplies obtained from wave plants and current plants, connected to the grid and supplying the demand of the municipalities in the North Coast region of the State of Rio Grande do Sul, the southernmost state of Brazil. The study was carried out with simulations with the Homer Legacy software, with some adaptations for the simulation of ocean wave plants and ocean current plants. The results indicate that the ocean wave power plants were viable in the vast majority of simulated scenarios, while the ocean current power plants were viable in the scenarios with more intense average ocean current speeds and with more expensive energy acquired from the interconnected system.展开更多
文摘Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-gineering company, the localization of technicalequipment, charge for SO2 emission andnormalized management, this article makes acomprehensive analysis and puts forwardconstructive suggestions. These will providesome references for those being engaged in fluegas desulfurization in coal-fired power plants.[
基金supported by the National Nature Science Foundation of China(Grant No.51821004)supported by National Soft Science Projects:"Frontier tracking research on science and technology in the field of energy" program
文摘The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.
文摘Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.
基金funded by the National Natural Science Foundation of China(52006079)the Natural Science Foundation of Hubei Province(2020CFB247)the National Key Research and Development Program of China(2018YFB0605201)。
文摘On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to collect particle samples.Gas chromatography-flame ionization detector/mass spectrometry and gas chromatography-mass spectrometry was the offline analysis method.We found that the total mass concentration of the tested 102 VOC species at the outlet of wet flue gas desulfuration device was(13456±47)μg·m^(-3),which contained aliphatic hydrocarbons(57.9%),aromatic hydrocarbons(26.8%),halogen-containing species(14.5%),and a small amount of oxygen-containing and nitrogencontaining species.The most abundant species were 1-hexene,n-hexane and 2-methylpentane.The top ten species in terms of mass fraction(with a total mass fraction of 75.3%)were mainly hydrocarbons with a carbon number of 6 or higher and halogenated hydrocarbons with a lower carbon number.The mass concentration of VOC species in the particle phase was significantly lower than that in the gas phase.The change of VOC mass concentrations along the air pollution control devices indicates that conventional pollutant control equipment had a limited effect on VOC reduction.Ozone formation potential calculations showed that aromatic hydrocarbons contributed the highest ozone formation(46.4%)due to their relatively high mass concentrations and MIR(maximum increment reactivity)values.
文摘Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 capture technology has been paid great attention. However, when connecting the CO2 capture process with a coal-fired power plant, the huge energy and efficiency penalty caused by CO2 capture has become a serious problem for its application. Thus, it is of great significance to reduce the related energy consumption. Based on an existing coal-fired power plant, this paper proposes a new way for the decarburized retrofitting of the coal-fired power plant, which helps to improve the overall efficiency of the power plant with less energy and efficiency penalty. The decarburized retrofitting scheme proposed will provide a new route for the CO2 capture process in China.
基金The work was supported by the National Key Research and Development Plan of China(No.2016YFB0600605).
文摘In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic precipitator(WESP).In this work,particulate matter with aerodynamic diameter less than 10μm(PM_(10))and sulfur oxides(SO_(x))have been studied in a coal-fired power plant.The plant is equipped with selective catalytic reduction,electrostatic precipitator,WFGD,WESP.The results show that the PM_(10)removal efficiencies in WFGD and WESP are 54.34%and 50.39%,respectively,and the overall removal efficiency is 77.35%.WFGD and WESP have effects on the particle size distribution.After WFGD,the peak of particles shifts from 1.62 to 0.95μm,and the mass concentration of fine particles with aerodynamic diameter less than 0.61μm increases.After WESP,the peak of particle size shifts from 0.95 to 1.61μm.The differences are due to the agglomeration and growth of small particles.The SO_(3)mass concentration increases after SCR,but WFGD has a great influence on SO_(x)with the efficiency of 96.56%.WESP can remove SO_(x),but the efficiency is 20.91%.The final emission factors of SO_(2),SO_(3),PM_(1),PM_(2.5)and PM_(10)are 0.1597,0.0450,0.0154,0.0267 and 0.0215(kg·t^(−1)),respectively.Compared with the research results without ultra-low emission retrofit,the emission factors are reduced by 1~2 orders of magnitude,and the emission control level of air pollutants is greatly improved.
文摘The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The environmental management of hazardous waste in coal-fired power plants started late, and there are many problems in the construction and management of their storage facilities. In this paper, taking eight typical coal-fired power plants as examples, the present problems of hazardous waste storage facilities in coal-fired power plants are analyzed, and corresponding countermeasures are put forward to solve the main common problems.
文摘With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China and abroad. Sooner or later, the integration of CO_2 capture and storage (CCS) facility with coal-fired power plant will be inevitably put on the agenda of developers.
文摘Xiangfan Coal-fired Power Plant, a key energy construction project matched with Three Gorges Project, approved by the State Council. formally started to build in the suburb of Xiangfan City, Hubei Province on November 29, 1996.
文摘For Finland, carbon dioxide mineralisation was identified as the only option for CCS (carbon capture and storage) application. Unfortunately it has not been embraced by the power sector. One interesting source-sink combination, however, is formed by magnesium silicate resources at Vammala, located -85 km east of the 565 MWe coal-fired Meri-Pori Power Plant on the country's southwest coast. This paper assesses mineral sequestration of Meri-Pori power plant CO2, using Vammala mineral resources and the mineralisation process under development at Abo Akademi University. That process implies Mg(OH)E production from magnesium silicate-based rock, followed by gas/solid carbonation of the Mg(OH)2 in a pressurised fluidised bed. Reported are results on experimental work, i.e., Mg(OH)2 production, with rock from locations close to Meri-Pori. Results suggest a total CO2 fixation capacity -50 Mt CO2 for the Vammala site, although production of Mg(OH)2 from rock from the site is challenging. Finally, as mineralisation could be directly applied to flue gases without CO2 pre-capture, we report from experimental work on carbonation of Mg(OH)2 with CO2 and CO2-SO2-O2 gas mixtures. Results show that SO2 readily reacts with Mg(OH)2, providing an opportunity to simultaneously capture SO2 and CO2, which could make separate flue gas desulphurisation redundant.
文摘In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.
基金the National Science and Technology Support Program of China(2015BAA05B02).
文摘Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental problems.This paper focuses on near-zero emission technologies and applications for clean coal-fired power.The long-term operation states of near-zero emission units were evaluated,and synergistic and special mercury(Hg)control technologies were researched.The results show that the principle technical route of near-zero emission,which was applied to 101 of China’s coal-fired units,has good adaptability to coal properties.The emission concentrations of particulate matter(PM),SO2,and NOx were below the emission limits of gas-fired power plants and the compliance rates of the hourly average emission concentrations reaching near-zero emission in long-term operation exceeded 99%.With the application of near-zero emission technologies,the generating costs increased by about 0.01 CNY∙(kW∙h)-1.However,the total emissions of air pollutants decreased by about 90%,resulting in effective improvement of the ambient air quality.Furthermore,while the Hg emission concentrations of the near-zero emission units ranged from 0.51 to 2.89μg∙m^-3,after the modified fly ash(MFA)special Hg removal system was applied,Hg emission concentration reached as low as 0.29μg∙m^-3.The operating cost of this system was only 10%-15%of the cost of mainstream Hg removal technology using activated carbon injection.Based on experimental studies carried out in a 50000 m^3∙h^-1 coal-fired flue gas pollutant control pilot platform,the interaction relationships of multi-pollutant removal were obtained and solutions were developed for emissions reaching different limits.A combined demonstration application for clean coal-fired power,with the new“1123”eco-friendly emission limits of 1,10,20 mg∙m^-3,and 3μg∙m^-3,respectively,for PM,SO2,NOx,and Hg from near-zero emission coal-fired power were put forward and realized,providing engineering and technical support for the national enhanced pollution emission standards.
文摘On March 25 1996, the electron beam flue gas desulfurization demonstration project of Chengdu Cogeneration Power Plant started formal construction This is at present the largest electron beam desulfurization project in power plants in the world, and is jointly constructed by Sichuan Electric Power Bureau and the EBARA Works of Japan, This is an important cooperation project in environment protection between
文摘In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,in the process of researching new energy farms,there are some problems when they are integrated into the power system.In order to ensure the stability of new energy power plants,it is necessary to conduct an in-depth analysis of the grid connection technology of new energy farms.In the study,it is necessary to learn about the specific problems of the stability of the grid connection of new energy power plants,and to clarify the specific application of the grid connection technology of new energy power plants from the application principle and advantages of the grid connection technology of new energy power plants.Through simulation experiments,the positive effect of grid connection technology of new energy power plants in improving the stability of power systems was determined.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB40010200)the National Natural Science Foundation of China (Nos.41976220 and 41776190)the National Key Research and Development Program of China (No.2020YFA0608501)。
文摘Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power plants on soil microbial communities have received little attention through atmospheric pollutant deposition and coal-stacking.Here,we collected the samples of power plant soils(PS),coal-stacking soils(CSS)and agricultural soils(AS)around three coal-fired power plants and background control soils(BG)in Huainan,a typical mineral resource-based city in East China,and investigated the microbial diversity and community structures through a high-throughput sequencing technique.Coal-stacking significantly increased(p<0.05)the contents of total carbon,total nitrogen,total sulfur and Mo in the soils,whereas the deposition of atmospheric pollutants enhanced the levels of V,Cu,Zn and Pb.Proteobacteria,Actinobacteria,Thaumarchaeota,Thermoplasmata,Ascomycota and Basidiomycota were the dominant taxa in all soils.The bacterial community showed significant differences(p<0.05)among PS,CSS,AS and BG,whereas archaeal and fungal communities showed significant differences(p<0.01)according to soil samples around three coal-fired power plants.The predominant environmental variables affecting soil bacterial,archaeal and fungal communities were Mo-TN-TS,Cu-V-Mo,and organic matter(OM)-Mo,respectively.Certain soil microbial genera were closely related to multiple key factors associated with stacking coal and heavy metal deposition from power plants.This study provided useful insight into better understanding of the relationships between soil microbial communities and long-term disturbances from coal-fired power plants.
基金supported by the National Key Research and Development Program of China[grant number 2022YFC3105304]the National Natural Science Foundation of China[grant number 72348001]the National Social Science Fund of China[grant number 22&ZD108].
文摘China's efforts to mitigate air pollution from its large-scale coal-fired power plants(CFPPs)have involved the widespread use of air pollution control devices(APCDs).However,the operation of these devices relies on substantial electricity generated by CFPPs,resulting in indirect CO_(2) emissions.The extent of CO_(2)emissions caused by APCDs in China remains uncertain.Here,using a plant-level dataset,we quantified the CO_(2)emissions associated with electricity consumption by APCDs in China's CFPPs.Our findings reveal a significant rise in CO_(2)emissions attributed to APCDs,increasing from 1.48 Mt in 2000 to 51.7 Mt in 2020.Moreover,the contribution of APCDs to total CO_(2)emissions from coal-fired power generation escalated from 0.12%to 1.19%.Among the APCDs,desulfurization devices accounted for approximately 80%of the CO_(2)emissions,followed by dust removal and denitration devices.Scenario analysis indicates that the lifespan of CFPPs will profoundly impact future emissions,with Nei Mongol,Shanxi,and Shandong provinces projected to exhibit the highest emissions.Our study emphasizes the urgent need for a comprehensive assessment of environmental policies and provides valuable insights for the integrated management of air pollutants and carbon emissions in CFPPs.
文摘The objective of this paper is the valuation of radiological health effects of Yatagan Power Plant. To this aim the radiation dose calculations are carried out for the population living within 80 km radius of the plant. The average of the maximum measured specific isotopes 238U, 232Th and 226Ra in the flying ash samples are considered as radioactive sources. Based on the dose calculations, first the stochastic health effects and then monetary health effects are estimated. The estimated total collective dose and economic value of the pre-dicted health effects are 0.3098 man Sv/y and 14791 US$/y respectively. The results obtained from the dose calculations are lower than the limits of International Commission of Radiation Protection (ICRP) and it does not pose any risk for public health. Monetary value of health risks is also negligible in comparison to the av-erage yearly sales revenue of the plant which is 250 million US$.
文摘Some types of renewable energy have been experiencing rapid evolution in recent decades, notably among the energies associated with the oceans, such as wave and current energies. The development of new energy conversion technologies for these two forms of energy has been offering a large number of equipment configurations and plant geometries for energy conversion. This process can be implemented aiming at the result of feasibility studies in places with energy potentials, establishing minimum feasibility limits to be reached. This work aims to contribute in this sense with a feasibility study of a system with ocean wave power plants and with socio-current power plants to be operated on the southern coast of Brazil. This study evaluates a hybrid system with contributions from energy supplies obtained from wave plants and current plants, connected to the grid and supplying the demand of the municipalities in the North Coast region of the State of Rio Grande do Sul, the southernmost state of Brazil. The study was carried out with simulations with the Homer Legacy software, with some adaptations for the simulation of ocean wave plants and ocean current plants. The results indicate that the ocean wave power plants were viable in the vast majority of simulated scenarios, while the ocean current power plants were viable in the scenarios with more intense average ocean current speeds and with more expensive energy acquired from the interconnected system.