Computer-generated holography technology has been widely applied,and as research in this field deepens,the demand for memory and computational power in small AR and VR devices continues to increase.This paper presents...Computer-generated holography technology has been widely applied,and as research in this field deepens,the demand for memory and computational power in small AR and VR devices continues to increase.This paper presents a hologram generation method,i.e.,a symmetrically high-compressed look-up table method,which can reduce memory usage by50%.In offline computing,half of the basic horizontal and vertical modulation factors are stored,halving the memory requirements without affecting inline speed.Currently,its potential extends to various holographic applications,including the production of optical diffraction elements.展开更多
The current exact Rayleigh scattering calculation of ocean color remote sensing uses the look-up table (LUT), which is usually created for a special remote sensor and cannot be applied to other sensors. For practica...The current exact Rayleigh scattering calculation of ocean color remote sensing uses the look-up table (LUT), which is usually created for a special remote sensor and cannot be applied to other sensors. For practical application, a general purpose Rayleigh scattering LUT which can be applied to all ocean color remote sensors is generated. An adding-doubling method to solve the vector radiative transfer equation in the plane-parallel atmosphere is deduced in detail. Compared with the exact Rayleigh scattering radiance derived from the MODIS exact Rayleigh scattering LUT, it is proved that the relative error of Rayleigh scattering calculation with the adding-doubling method is less than 0.25%, which meets the required accuracy of the atmospheric correction of ocean color remote sensing. Therefore, the adding-doubling method can be used to generate the exact Rayleigh scattering LUT for the ocean color remote sensors. Finally, the general purpose exact Rayleigh scattering LUT is generated using the adding-doubling method. On the basis of the general purpose LUT, the calculated Rayleigh scattering radiance is tested by comparing with the LUTs ofMODIS, SeaWiFS and the other ocean color sensors, showing that the relative errors are all less than 0.5%, and this general purpose LUT can be applied to all ocean color remote sensors.展开更多
The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the t...The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the tracking loop.Since the frequency step is usually 500 Hz or larger,the Doppler shift estimation accuracy cannot guarantee that satellite signals are brought into a stable tracking state.The straightforward solutions consist in increasing the sampling time and using zero-padding to improve the frequency resolution of the FFT.However,these solutions intensify the complexity and amount of computation.The contradiction between the acquisition accuracy and the computational load leads us to research for a more simple and effective algorithm,which achieves fine acquisition by a look-up table.After coarse acquisition using the parallel frequency acquisition(PFA)algorithm,the proposed algorithm optimizes the Doppler shift estimation through the look-up table method based on the FFT results to improve the acquisition accuracy of the Doppler shift with a minimal additional computing load.When the Doppler shift is within the queryable range of the table,the proposed algorithm can improve the Doppler shift estimation accuracy to 50 Hz for the BeiDou B1I signal.展开更多
Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (...Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.展开更多
Burial depth is a crucial factor affecting the forces and deformation of tunnels during earthquakes.One key issue is a lack of understanding of the effect of a change in the buried depth of a single-side tunnel on the...Burial depth is a crucial factor affecting the forces and deformation of tunnels during earthquakes.One key issue is a lack of understanding of the effect of a change in the buried depth of a single-side tunnel on the seismic response of a double-tunnel system.In this study,shaking table tests were designed and performed based on a tunnel under construction in Dalian,China.Numerical models were established using the equivalent linear method combined with ABAQUS finite element software to analyze the seismic response of the interacting system.The results showed that the amplification coefficient of the soil acceleration did not change evidently with the burial depth of the new tunnel but decreased as the seismic amplitude increased.In addition,the existing tunnel acceleration,earth pressure,and internal force were hardly affected by the change in the burial depth;for the new tunnel,the acceleration and internal force decreased as the burial depth increased,while the earth pressure increased.This shows that the earth pressure distribution in a double-tunnel system is relatively complex and mainly concentrated on the arch spandrel and arch springing of the relative area.Overall,when the horizontal clearance between the center of the two tunnels was more than twice the sum of the radius of the outer edges of the two tunnels,the change in the burial depth of the new tunnel had little effect on the existing one,and the tunnel structure was deemed safe.These results provide a preliminary understanding and reference for the seismic performance of a double-tunnel system.展开更多
Obtaining the vertical distribution profile of trace gas is of great significance for studying the diffusion procedure of air pollution.In this article,a look-up table method based on multi-axis differential optical a...Obtaining the vertical distribution profile of trace gas is of great significance for studying the diffusion procedure of air pollution.In this article,a look-up table method based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)technology is established for retrieving the tropospheric NO_(2) vertical distribution profiles.This method retrieves the aerosol extinction profiles with minimum cost function.Then,the aerosol extinction profiles and the atmospheric radiation transfer model(RTM)are employed to establish the look-up table for retrieving the NO_(2) vertical column densities(VCDs)and profiles.The measured NO_(2) differential slant column densities(DSCDs)are compared with the NO_(2) DSCDs simulated by the atmospheric RTM,and the NO_(2) VCDs,the weight factor of NO_(2) in the boundary layer,and the boundary layer height are obtained by the minimization process.The look-up table is established to retrieve NO_(2) VCDs based on MAX-DOAS measurements in Huaibei area,and the results are compared with the data from Copernicus Atmospheric Monitoring Service(CAMS)model.It is found that there are nearly consistent and the correlation coefficient R2 is more than 0.86.The results show that this technology provides a more convenient and accurate retrieval method for the stereoscopic monitoring of atmospheric environment.展开更多
To solve the hardware deployment problem caused by the vast demanding computational complexity of convolutional layers and limited hardware resources for the hardware network inference,a look-up table(LUT)-based convo...To solve the hardware deployment problem caused by the vast demanding computational complexity of convolutional layers and limited hardware resources for the hardware network inference,a look-up table(LUT)-based convolution architecture built on a field-programmable gate array using integer multipliers and addition trees is used.With the help of the Winograd algorithm,the optimization of convolution and multiplication is realized to reduce the computational complexity.The LUT-based operator is further optimized to construct a processing unit(PE).Simultaneously optimized storage streams improve memory access efficiency and solve bandwidth constraints.The data toggle rate is reduced to optimize power consumption.The experimental results show that the use of the Winograd algorithm to build basic processing units can significantly reduce the number of multipliers and achieve hardware deployment acceleration,while the time-division multiplexing of processing units improves resource utilization.Under this experimental condition,compared with the traditional convolution method,the architecture optimizes computing resources by 2.25 times and improves the peak throughput by 19.3 times.The LUT-based Winograd accelerator can effectively solve the deployment problem caused by limited hardware resources.展开更多
The widespread application of new technologies,while empowering women with new opportunities,might also put them at disadvantage.For example,in comparison with males,the application of AI might be more likely to cost ...The widespread application of new technologies,while empowering women with new opportunities,might also put them at disadvantage.For example,in comparison with males,the application of AI might be more likely to cost them their jobs.Meanwhile,women are missing out the opportunity to participate in the policy-making process–they are absent from the table.If no change is made in the current policies,we will miss the goal to achieve gender equality,the fifth of the 17 Sustainable Development Goals set for UN’s 2030 Agenda for Sustainable Development,warned elite women scientists with the Organization for Women in Science for the Developing World(OWSD).What shall be done now?How can we make a difference?They are in action to help.展开更多
This paper posits the discovery of the new elementary particles from the energy spectrum for the knees-ankles-toe of cosmic rays. The energy spectrum from 109 eV to 1020 eV appears to follow a single power law except ...This paper posits the discovery of the new elementary particles from the energy spectrum for the knees-ankles-toe of cosmic rays. The energy spectrum from 109 eV to 1020 eV appears to follow a single power law except few breaks at the knees-ankles-toe. The power index increases at the first knee and the second knee, and decreases at the ankle. Above 4 × 1019 eV, the power index increases as the “toe”. The fine structure of the cosmic ray spectrum shows that an ankle with decrease in power index is in between the first knee and the second knee, resulting in two knees, two ankles, and one toe. This paper posits that the knees-ankles-toe are explained by the very high-energy fermions and bosons in the periodic table of elementary particles that places all known leptons, quarks, gauge bosons, and the Higgs boson in the table with the calculated masses in good agreement with observed values. In the periodic table, some high-energy dimensional fermions (Fd where d= dimensional orbital number from 5 to 11) and bosons (Bd) are involved in the knees-ankles-toe. At the knees and the toe, some parts of the energies from the energy sources of cosmic rays are spent to generate Fd and Bd, resulting in the increase of power index. The ankles are the the middle points (midpoints) between the adjacent dimensional fermions and bosons. At a midpoint, the energy is too high to keep the thermally unstable high-energy dimensional particle,resulting in the decay and the decrease of power index. The calculated masses of B8, the midpoint, F9, the midpoint, and B9, are 1.7 × 1015, 2 × 1016, 2.4 × 1017, 2.8 × 1018, and 3.2 × 1019 eV, respectively, which are in good agreement with observed 3 × 1015, 2 × 1016, 3 × 1017, 3 × 1018, and 4 × 1019 eV for the first knee, the first ankle, the second knee, the second ankle, and the toe, respectively. The mass of F10 is 4.4 × 1021 eV beyond the GZK limit, so F10 and above are not observed.展开更多
Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio...Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.62205350)the Special Project of Central Government Guiding Local Science and Technology Development in Beijing 2020 (Grant No.Z20111000430000)the Guangxi Nanning Key R&D Program (Grant No.20233067)。
文摘Computer-generated holography technology has been widely applied,and as research in this field deepens,the demand for memory and computational power in small AR and VR devices continues to increase.This paper presents a hologram generation method,i.e.,a symmetrically high-compressed look-up table method,which can reduce memory usage by50%.In offline computing,half of the basic horizontal and vertical modulation factors are stored,halving the memory requirements without affecting inline speed.Currently,its potential extends to various holographic applications,including the production of optical diffraction elements.
基金supported by the National Natural Science Foundation of China under contract No.40506036the High Tech Research and Development"863"Program of China under contract No.2003AA131160-04the Science and Technology Plan of Zhejiang Province of China under contract Nos 2004E60054 and 2004C13027.
文摘The current exact Rayleigh scattering calculation of ocean color remote sensing uses the look-up table (LUT), which is usually created for a special remote sensor and cannot be applied to other sensors. For practical application, a general purpose Rayleigh scattering LUT which can be applied to all ocean color remote sensors is generated. An adding-doubling method to solve the vector radiative transfer equation in the plane-parallel atmosphere is deduced in detail. Compared with the exact Rayleigh scattering radiance derived from the MODIS exact Rayleigh scattering LUT, it is proved that the relative error of Rayleigh scattering calculation with the adding-doubling method is less than 0.25%, which meets the required accuracy of the atmospheric correction of ocean color remote sensing. Therefore, the adding-doubling method can be used to generate the exact Rayleigh scattering LUT for the ocean color remote sensors. Finally, the general purpose exact Rayleigh scattering LUT is generated using the adding-doubling method. On the basis of the general purpose LUT, the calculated Rayleigh scattering radiance is tested by comparing with the LUTs ofMODIS, SeaWiFS and the other ocean color sensors, showing that the relative errors are all less than 0.5%, and this general purpose LUT can be applied to all ocean color remote sensors.
基金the Open Project of State Key Laboratory of Automotive Simulation and Control,Jilin University(20161108)the National Natural Science Foundation of China(51505221)the Fundamental Research Funds for the Central Universities(NS2019022).
文摘The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the tracking loop.Since the frequency step is usually 500 Hz or larger,the Doppler shift estimation accuracy cannot guarantee that satellite signals are brought into a stable tracking state.The straightforward solutions consist in increasing the sampling time and using zero-padding to improve the frequency resolution of the FFT.However,these solutions intensify the complexity and amount of computation.The contradiction between the acquisition accuracy and the computational load leads us to research for a more simple and effective algorithm,which achieves fine acquisition by a look-up table.After coarse acquisition using the parallel frequency acquisition(PFA)algorithm,the proposed algorithm optimizes the Doppler shift estimation through the look-up table method based on the FFT results to improve the acquisition accuracy of the Doppler shift with a minimal additional computing load.When the Doppler shift is within the queryable range of the table,the proposed algorithm can improve the Doppler shift estimation accuracy to 50 Hz for the BeiDou B1I signal.
基金financially supported by the National Natural Science Foundation of China(11202081,11272124,and 11472109)the State Key Lab of Subtropical Building Science,South China University of Technology(2014ZC17)
文摘Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.
基金Scientific Research Fund of Liaoning Provincial Education Department under Grant No.LJKZ0336。
文摘Burial depth is a crucial factor affecting the forces and deformation of tunnels during earthquakes.One key issue is a lack of understanding of the effect of a change in the buried depth of a single-side tunnel on the seismic response of a double-tunnel system.In this study,shaking table tests were designed and performed based on a tunnel under construction in Dalian,China.Numerical models were established using the equivalent linear method combined with ABAQUS finite element software to analyze the seismic response of the interacting system.The results showed that the amplification coefficient of the soil acceleration did not change evidently with the burial depth of the new tunnel but decreased as the seismic amplitude increased.In addition,the existing tunnel acceleration,earth pressure,and internal force were hardly affected by the change in the burial depth;for the new tunnel,the acceleration and internal force decreased as the burial depth increased,while the earth pressure increased.This shows that the earth pressure distribution in a double-tunnel system is relatively complex and mainly concentrated on the arch spandrel and arch springing of the relative area.Overall,when the horizontal clearance between the center of the two tunnels was more than twice the sum of the radius of the outer edges of the two tunnels,the change in the burial depth of the new tunnel had little effect on the existing one,and the tunnel structure was deemed safe.These results provide a preliminary understanding and reference for the seismic performance of a double-tunnel system.
基金the National Natural Science Foundation of China(Grant No.41875040)the Top-notch Talents Program in Universities of Anhui Province,China(Grant No.gxbjZD2020067)the Natural Science Research Projects of Universities in Anhui Province,China(Grant No.KJ2020A0029).
文摘Obtaining the vertical distribution profile of trace gas is of great significance for studying the diffusion procedure of air pollution.In this article,a look-up table method based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)technology is established for retrieving the tropospheric NO_(2) vertical distribution profiles.This method retrieves the aerosol extinction profiles with minimum cost function.Then,the aerosol extinction profiles and the atmospheric radiation transfer model(RTM)are employed to establish the look-up table for retrieving the NO_(2) vertical column densities(VCDs)and profiles.The measured NO_(2) differential slant column densities(DSCDs)are compared with the NO_(2) DSCDs simulated by the atmospheric RTM,and the NO_(2) VCDs,the weight factor of NO_(2) in the boundary layer,and the boundary layer height are obtained by the minimization process.The look-up table is established to retrieve NO_(2) VCDs based on MAX-DOAS measurements in Huaibei area,and the results are compared with the data from Copernicus Atmospheric Monitoring Service(CAMS)model.It is found that there are nearly consistent and the correlation coefficient R2 is more than 0.86.The results show that this technology provides a more convenient and accurate retrieval method for the stereoscopic monitoring of atmospheric environment.
基金The Academic Colleges and Universities Innovation Program 2.0(No.BP0719013)。
文摘To solve the hardware deployment problem caused by the vast demanding computational complexity of convolutional layers and limited hardware resources for the hardware network inference,a look-up table(LUT)-based convolution architecture built on a field-programmable gate array using integer multipliers and addition trees is used.With the help of the Winograd algorithm,the optimization of convolution and multiplication is realized to reduce the computational complexity.The LUT-based operator is further optimized to construct a processing unit(PE).Simultaneously optimized storage streams improve memory access efficiency and solve bandwidth constraints.The data toggle rate is reduced to optimize power consumption.The experimental results show that the use of the Winograd algorithm to build basic processing units can significantly reduce the number of multipliers and achieve hardware deployment acceleration,while the time-division multiplexing of processing units improves resource utilization.Under this experimental condition,compared with the traditional convolution method,the architecture optimizes computing resources by 2.25 times and improves the peak throughput by 19.3 times.The LUT-based Winograd accelerator can effectively solve the deployment problem caused by limited hardware resources.
文摘The widespread application of new technologies,while empowering women with new opportunities,might also put them at disadvantage.For example,in comparison with males,the application of AI might be more likely to cost them their jobs.Meanwhile,women are missing out the opportunity to participate in the policy-making process–they are absent from the table.If no change is made in the current policies,we will miss the goal to achieve gender equality,the fifth of the 17 Sustainable Development Goals set for UN’s 2030 Agenda for Sustainable Development,warned elite women scientists with the Organization for Women in Science for the Developing World(OWSD).What shall be done now?How can we make a difference?They are in action to help.
文摘This paper posits the discovery of the new elementary particles from the energy spectrum for the knees-ankles-toe of cosmic rays. The energy spectrum from 109 eV to 1020 eV appears to follow a single power law except few breaks at the knees-ankles-toe. The power index increases at the first knee and the second knee, and decreases at the ankle. Above 4 × 1019 eV, the power index increases as the “toe”. The fine structure of the cosmic ray spectrum shows that an ankle with decrease in power index is in between the first knee and the second knee, resulting in two knees, two ankles, and one toe. This paper posits that the knees-ankles-toe are explained by the very high-energy fermions and bosons in the periodic table of elementary particles that places all known leptons, quarks, gauge bosons, and the Higgs boson in the table with the calculated masses in good agreement with observed values. In the periodic table, some high-energy dimensional fermions (Fd where d= dimensional orbital number from 5 to 11) and bosons (Bd) are involved in the knees-ankles-toe. At the knees and the toe, some parts of the energies from the energy sources of cosmic rays are spent to generate Fd and Bd, resulting in the increase of power index. The ankles are the the middle points (midpoints) between the adjacent dimensional fermions and bosons. At a midpoint, the energy is too high to keep the thermally unstable high-energy dimensional particle,resulting in the decay and the decrease of power index. The calculated masses of B8, the midpoint, F9, the midpoint, and B9, are 1.7 × 1015, 2 × 1016, 2.4 × 1017, 2.8 × 1018, and 3.2 × 1019 eV, respectively, which are in good agreement with observed 3 × 1015, 2 × 1016, 3 × 1017, 3 × 1018, and 4 × 1019 eV for the first knee, the first ankle, the second knee, the second ankle, and the toe, respectively. The mass of F10 is 4.4 × 1021 eV beyond the GZK limit, so F10 and above are not observed.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.62061024the Project of Gansu Province Science and Technology Department under Grant No.22ZD6GA055.
文摘Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.