The thixotropy properties and the motion law of a sphere in the Bingham fluid have been studied. Through observation of the settling motion of a single sphere in the Bingham fluid on the X-ray screen, it has been disc...The thixotropy properties and the motion law of a sphere in the Bingham fluid have been studied. Through observation of the settling motion of a single sphere in the Bingham fluid on the X-ray screen, it has been discovered that the mud in estuaries and along sea bay, and the hyperconcentrated flow all behave as the Bingham fl fluid with thixotropy properties as the large sediment concentration. Through derivation, the theoretical relationship between the yield stress and non-settling maximum sphere supported by the stress for the Bingham fluid has been developed, the equations for calculating the increasing yield stress and the non-settling maximum sphere diameter with the duration at rest of the slurry have been obtained. In consideration of the effect of thixotropy on fluid motion, the Navier-Stokes equation group for the Bingham thixotropy fluid has been developed. Through further study of the flow boundary condition of settling motion of ii single sphere in the Bingham thixotropy fluid, and the solving of the Navier-Stokes equation group, under the small Reynolds number, the theoretical equation of the drag force of the Bingham thixotropy fluid flowing around a sphere has been deduced. The theoretical relationship between drag coefficient and Reynolds number has been derived. By use of the experimental data of rheological test of various slurries measured with viscometer and those of single sphere motion observed on the X-ray screeen, the above equations have been verified. The equations are in good agreement with the experimental data for various slurries.展开更多
Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events ...Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected.展开更多
Due to limited financial resources and challenging geographical conditions, the number of seismic observation networks in China is still very small and they are not widely distributed. Therefore, the available earthqu...Due to limited financial resources and challenging geographical conditions, the number of seismic observation networks in China is still very small and they are not widely distributed. Therefore, the available earthquake records obtained after an earthquake have been limited. In this paper, auto-generation methods to obtain strong motion isolines under different conditions are proposed. To verify the accuracy of these methods, some examples, including application to the 2008 Wenchuan earthquake, are given.展开更多
We consider the skew Brownian motion as a solution of some stochastic differential equation. We prove for the skew Brownian motion the analogues of the arc-sine laws for Wiener process. Unlike of existing results, we ...We consider the skew Brownian motion as a solution of some stochastic differential equation. We prove for the skew Brownian motion the analogues of the arc-sine laws for Wiener process. Unlike of existing results, we are forced to consider a stochastic differential equation with discontinuous diffusion coefficient. Possible interpretations of obtained results are suggested.展开更多
Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper report...Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper reports the derivation and solution of equations comparable to the Fokker-Planck and Langevin equations for one-dimensional diffusion and decay of unstable particles. In marked contrast to the case of stable particles, the two equations are not equivalent, but provide different information regarding the same stochastic process. The differences arise because Brownian motion with particle decay is not a continuous process. The discontinuity is readily apparent in the computer-simulated trajectories of the Langevin equation that incorporate both a Wiener process for displacement fluctuations and a Bernoulli process for random decay. This paper also reports the derivation of the mean time of first passage of the decaying particle to absorbing boundaries. Here, too, particle decay can lead to an outcome markedly different from that for stable particles. In particular, the first-passage time of the decaying particle is always finite, whereas the time for a stable particle to reach a single absorbing boundary is theoretically infinite due to the heavy tail of the inverse Gaussian density. The methodology developed in this paper should prove useful in the investigation of radioactive gases, aerosols of radioactive atoms, dust particles to which adhere radioactive ions, as well as diffusing gases and liquids of unstable molecules.展开更多
The second law of thermodynamics, i.e. the law stating that the entropy in isolated macroscopic system can never decrease, is tightly connected to the work of the device called perpetual motion machine of second kind....The second law of thermodynamics, i.e. the law stating that the entropy in isolated macroscopic system can never decrease, is tightly connected to the work of the device called perpetual motion machine of second kind. Often this law is also defined as the inability to construct such a device. In the current paper we give complete, independent and consistent definitions of static, stationary and changing physical field. Based on that for the first time we give summarising, correct and complete definitions of natural resource machine and perpetual motion machine of second kind as well as motion machine of second kind in the set of tardyons and luxons. We present a principal structure of a motion machine of second kind using which we show that the Clausius statement and its equivalent statements in the thermodynamics can be violated for a practically big interval-time even under equilibrium fluctuations.展开更多
A Faraday isolator is shown to develop a temperature difference between its input and output, but still complies with the second law when all the heat carriers, in this case, photons are homogeneous and indistinguisha...A Faraday isolator is shown to develop a temperature difference between its input and output, but still complies with the second law when all the heat carriers, in this case, photons are homogeneous and indistinguishable. This result is a consequence of the H-theorem which assumes homogeneity and indistinguishability of particles. However, when a thermal feedback path is added, in which heat carriers have physical properties different from the photons in the isolator, then a heterogeneous system is formed not covered by the H-theorem, and the second law is violated.展开更多
Let {W(t), 0≤t<∞} be a standard, one dimensional Brownian motion, and {t n, n≥1} be a sequence of positive constans with t n+1 ≥C 2t n (C>1). We obtain that liminf n→∞ inf k≥n|W(t k)|t...Let {W(t), 0≤t<∞} be a standard, one dimensional Brownian motion, and {t n, n≥1} be a sequence of positive constans with t n+1 ≥C 2t n (C>1). We obtain that liminf n→∞ inf k≥n|W(t k)|t n 1logn =1e a.s.and the set of the limit points of inf k≥n|W(t k)|t n 1logn is 1e, 1 almost surely.展开更多
Based on dynamic rupture simulations on a planar fault in a homogeneous half-space, we investigated the nucleation processes using the time-weakening friction law. Both the characteristic time and the rupture speed in...Based on dynamic rupture simulations on a planar fault in a homogeneous half-space, we investigated the nucleation processes using the time-weakening friction law. Both the characteristic time and the rupture speed in the nucleation asperity play an important role in determining rupture behaviors on a fault plane following the time-weakening friction law, with which rupture starts from a single point in the nucleation asperity and propagates at a given speed toward the boundary of the nucleation area. Rupture with a small characteristic time or a large rupture speed in the nucleation asperity propagates earlier from the hypocenter. Rupture following the slipweakening friction law requires a smaller radius of nucleation patch to have similar rupture front contours of the time-weakening friction law. Even if the rupture velocity in the nucleation patch of the time-weakening friction law increases to infinity, the peak slip rate in the nucleation asperity is smaller than that of the slip-weakening law. The peak ground velocity distributions of ruptures following the two friction laws are also compared.展开更多
Removal of foreign bodies from seed mixtures, or their calibration for use as planting material, as well as fraction classification of granular materials requires screening surfaces with vibratory motion. This paper p...Removal of foreign bodies from seed mixtures, or their calibration for use as planting material, as well as fraction classification of granular materials requires screening surfaces with vibratory motion. This paper presents some aspects on the working process of a sieve, made of perforated sheet and having an outer conical surface with oscillatory circular motion (alternative) on the horizontal. Results are presented for some experimental researches on the movement of material on the sieve, for various kinematical parameters of the sieve (amplitude and oscillation frequency). A conical sieve, suspended at the upper and lower in three points, was tested for screening of rapeseeds in order to estimate the influence of oscillation frequency on the screening process. Curves were drawn for separation intensity on the sieve generating line, and by regression analysis with normal distribution law were determined the equation coefficients and the correlation with experimental data. Movement of material on the sieve and its working process, in general, was appreciated by means of the peak position of distribution curve depending on the oscillation frequency of the sieve, considering that the normal distribution law correlates very well the data obtained by experiments.展开更多
A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge fie...A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.展开更多
Elliptical motions of orbital bodies are treated here using Fourier series, Fortescue sequence components and Clarke’s instantaneous space vectors, quantities largely employed on electrical power systems analyses. Us...Elliptical motions of orbital bodies are treated here using Fourier series, Fortescue sequence components and Clarke’s instantaneous space vectors, quantities largely employed on electrical power systems analyses. Using this methodology, which evidences the analogy between orbital systems and autonomous second-order electrical systems, a new theory is presented in this article, in which it is demonstrated that Newton’s gravitational fields can also be treated as a composition of Hook’s elastic type fields, using the superposition principle. In fact, there is an identity between the equations of both laws. Furthermore, an energy analysis is conducted, and new concepts of power are introduced, which can help a better understanding of the physical mechanism of these quantities on both mechanical and electrical systems. The author believes that, as a practical consequence, elastic type gravitational fields can be artificially produced with modern engineering technologies, leading to possible satellites navigation techniques, with less dependency of external sources of energy and, even, new forms of energy sources for general purposes. This reinterpretation of orbital mechanics may also be complementary to conventional study, with implications for other theories such as relativistic, quantum, string theory and others.展开更多
This article is the continuation of article [1] where the experimental facts of observation of the electroscalar radiation in the spectrum of the Sun have been presented [2]. This radiation comes into the world having...This article is the continuation of article [1] where the experimental facts of observation of the electroscalar radiation in the spectrum of the Sun have been presented [2]. This radiation comes into the world having a long wavelength, being longitudinal and extraordinarily penetrating. In accordance with the principle of least action, the Lagrangian of the electroscalar field and the tensor of energy-moment are determined using the variation the potential and coordinates. The equation of motion the charged particle in electroscalar field is determined and the energy of particle has the negative sign with respect to the mechanical energy of particle and the energy of electromagnetic field. So, this is decreasing the electrical potential of particle during the propagation. The electroscalar energy of charged particle and field’s force acting on the particle during their motion change the particle’s electrical status which, in its turn, may trigger the transition of the particle into a compound state during interaction with any object. Due to the continuity this process can lead the particle to the state which enters into a compound state with a negative energy for a different particle’s velocity. This state is the physical vacuum’s state. Analysis of the solar spectrum demonstrates that scattering and absorption of electroscalar wave go on the cavities of solids. The spreading out of electroscalar field obeys to the law of plane wave and the transfer the energy and information can occur in vacuum and any medium.展开更多
The discrete element method(DEM)was used in this study to numerically simulate the mixing process and motion law of particles in brown rice germination device.And the reliability of simulation experiments was verified...The discrete element method(DEM)was used in this study to numerically simulate the mixing process and motion law of particles in brown rice germination device.And the reliability of simulation experiments was verified through physical experiments.In the discrete element simulation experiment,there were three mixing stages in the mixing process of the particles.The particle motion conditions at different rotational speeds were rolling,cascading,cataracting and centrifuging.The lower the filling degree,the higher the particle mixing efficiency.The radial trajectory of the particles was approximated as an elliptical helix that continuously shrank towards the axis.The research results indicated that under the same speed and filling conditions,the motion of brown rice particles in both the simulated and physical test environments is rolling and the drop height is the same.展开更多
文摘The thixotropy properties and the motion law of a sphere in the Bingham fluid have been studied. Through observation of the settling motion of a single sphere in the Bingham fluid on the X-ray screen, it has been discovered that the mud in estuaries and along sea bay, and the hyperconcentrated flow all behave as the Bingham fl fluid with thixotropy properties as the large sediment concentration. Through derivation, the theoretical relationship between the yield stress and non-settling maximum sphere supported by the stress for the Bingham fluid has been developed, the equations for calculating the increasing yield stress and the non-settling maximum sphere diameter with the duration at rest of the slurry have been obtained. In consideration of the effect of thixotropy on fluid motion, the Navier-Stokes equation group for the Bingham thixotropy fluid has been developed. Through further study of the flow boundary condition of settling motion of ii single sphere in the Bingham thixotropy fluid, and the solving of the Navier-Stokes equation group, under the small Reynolds number, the theoretical equation of the drag force of the Bingham thixotropy fluid flowing around a sphere has been deduced. The theoretical relationship between drag coefficient and Reynolds number has been derived. By use of the experimental data of rheological test of various slurries measured with viscometer and those of single sphere motion observed on the X-ray screeen, the above equations have been verified. The equations are in good agreement with the experimental data for various slurries.
基金Supported by National Natural Science Foundation of China Under Grant No.90715005,No.NCET-07-0186 and No.200802860007
文摘Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected.
基金The Science Foundation of IEM. No.2009B05The National Key Technology R & D Program.No.2009BAK55B01-02The Science Foundation of IEM. No.2007B11
文摘Due to limited financial resources and challenging geographical conditions, the number of seismic observation networks in China is still very small and they are not widely distributed. Therefore, the available earthquake records obtained after an earthquake have been limited. In this paper, auto-generation methods to obtain strong motion isolines under different conditions are proposed. To verify the accuracy of these methods, some examples, including application to the 2008 Wenchuan earthquake, are given.
文摘We consider the skew Brownian motion as a solution of some stochastic differential equation. We prove for the skew Brownian motion the analogues of the arc-sine laws for Wiener process. Unlike of existing results, we are forced to consider a stochastic differential equation with discontinuous diffusion coefficient. Possible interpretations of obtained results are suggested.
文摘Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper reports the derivation and solution of equations comparable to the Fokker-Planck and Langevin equations for one-dimensional diffusion and decay of unstable particles. In marked contrast to the case of stable particles, the two equations are not equivalent, but provide different information regarding the same stochastic process. The differences arise because Brownian motion with particle decay is not a continuous process. The discontinuity is readily apparent in the computer-simulated trajectories of the Langevin equation that incorporate both a Wiener process for displacement fluctuations and a Bernoulli process for random decay. This paper also reports the derivation of the mean time of first passage of the decaying particle to absorbing boundaries. Here, too, particle decay can lead to an outcome markedly different from that for stable particles. In particular, the first-passage time of the decaying particle is always finite, whereas the time for a stable particle to reach a single absorbing boundary is theoretically infinite due to the heavy tail of the inverse Gaussian density. The methodology developed in this paper should prove useful in the investigation of radioactive gases, aerosols of radioactive atoms, dust particles to which adhere radioactive ions, as well as diffusing gases and liquids of unstable molecules.
文摘The second law of thermodynamics, i.e. the law stating that the entropy in isolated macroscopic system can never decrease, is tightly connected to the work of the device called perpetual motion machine of second kind. Often this law is also defined as the inability to construct such a device. In the current paper we give complete, independent and consistent definitions of static, stationary and changing physical field. Based on that for the first time we give summarising, correct and complete definitions of natural resource machine and perpetual motion machine of second kind as well as motion machine of second kind in the set of tardyons and luxons. We present a principal structure of a motion machine of second kind using which we show that the Clausius statement and its equivalent statements in the thermodynamics can be violated for a practically big interval-time even under equilibrium fluctuations.
文摘A Faraday isolator is shown to develop a temperature difference between its input and output, but still complies with the second law when all the heat carriers, in this case, photons are homogeneous and indistinguishable. This result is a consequence of the H-theorem which assumes homogeneity and indistinguishability of particles. However, when a thermal feedback path is added, in which heat carriers have physical properties different from the photons in the isolator, then a heterogeneous system is formed not covered by the H-theorem, and the second law is violated.
文摘Let {W(t), 0≤t<∞} be a standard, one dimensional Brownian motion, and {t n, n≥1} be a sequence of positive constans with t n+1 ≥C 2t n (C>1). We obtain that liminf n→∞ inf k≥n|W(t k)|t n 1logn =1e a.s.and the set of the limit points of inf k≥n|W(t k)|t n 1logn is 1e, 1 almost surely.
基金supported by the National Natural Science Foundation of China (Nos. 41504039, 41474037 and 41274053)
文摘Based on dynamic rupture simulations on a planar fault in a homogeneous half-space, we investigated the nucleation processes using the time-weakening friction law. Both the characteristic time and the rupture speed in the nucleation asperity play an important role in determining rupture behaviors on a fault plane following the time-weakening friction law, with which rupture starts from a single point in the nucleation asperity and propagates at a given speed toward the boundary of the nucleation area. Rupture with a small characteristic time or a large rupture speed in the nucleation asperity propagates earlier from the hypocenter. Rupture following the slipweakening friction law requires a smaller radius of nucleation patch to have similar rupture front contours of the time-weakening friction law. Even if the rupture velocity in the nucleation patch of the time-weakening friction law increases to infinity, the peak slip rate in the nucleation asperity is smaller than that of the slip-weakening law. The peak ground velocity distributions of ruptures following the two friction laws are also compared.
文摘Removal of foreign bodies from seed mixtures, or their calibration for use as planting material, as well as fraction classification of granular materials requires screening surfaces with vibratory motion. This paper presents some aspects on the working process of a sieve, made of perforated sheet and having an outer conical surface with oscillatory circular motion (alternative) on the horizontal. Results are presented for some experimental researches on the movement of material on the sieve, for various kinematical parameters of the sieve (amplitude and oscillation frequency). A conical sieve, suspended at the upper and lower in three points, was tested for screening of rapeseeds in order to estimate the influence of oscillation frequency on the screening process. Curves were drawn for separation intensity on the sieve generating line, and by regression analysis with normal distribution law were determined the equation coefficients and the correlation with experimental data. Movement of material on the sieve and its working process, in general, was appreciated by means of the peak position of distribution curve depending on the oscillation frequency of the sieve, considering that the normal distribution law correlates very well the data obtained by experiments.
文摘A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
文摘Elliptical motions of orbital bodies are treated here using Fourier series, Fortescue sequence components and Clarke’s instantaneous space vectors, quantities largely employed on electrical power systems analyses. Using this methodology, which evidences the analogy between orbital systems and autonomous second-order electrical systems, a new theory is presented in this article, in which it is demonstrated that Newton’s gravitational fields can also be treated as a composition of Hook’s elastic type fields, using the superposition principle. In fact, there is an identity between the equations of both laws. Furthermore, an energy analysis is conducted, and new concepts of power are introduced, which can help a better understanding of the physical mechanism of these quantities on both mechanical and electrical systems. The author believes that, as a practical consequence, elastic type gravitational fields can be artificially produced with modern engineering technologies, leading to possible satellites navigation techniques, with less dependency of external sources of energy and, even, new forms of energy sources for general purposes. This reinterpretation of orbital mechanics may also be complementary to conventional study, with implications for other theories such as relativistic, quantum, string theory and others.
文摘This article is the continuation of article [1] where the experimental facts of observation of the electroscalar radiation in the spectrum of the Sun have been presented [2]. This radiation comes into the world having a long wavelength, being longitudinal and extraordinarily penetrating. In accordance with the principle of least action, the Lagrangian of the electroscalar field and the tensor of energy-moment are determined using the variation the potential and coordinates. The equation of motion the charged particle in electroscalar field is determined and the energy of particle has the negative sign with respect to the mechanical energy of particle and the energy of electromagnetic field. So, this is decreasing the electrical potential of particle during the propagation. The electroscalar energy of charged particle and field’s force acting on the particle during their motion change the particle’s electrical status which, in its turn, may trigger the transition of the particle into a compound state during interaction with any object. Due to the continuity this process can lead the particle to the state which enters into a compound state with a negative energy for a different particle’s velocity. This state is the physical vacuum’s state. Analysis of the solar spectrum demonstrates that scattering and absorption of electroscalar wave go on the cavities of solids. The spreading out of electroscalar field obeys to the law of plane wave and the transfer the energy and information can occur in vacuum and any medium.
基金the National Natural Science Foundation of China(Grant No.32001423)Natural Science Foundation of Hubei Province(Grant No.2020CFB471)+2 种基金Huazhong Agricultural University College Students Science and Technology Innovation Fund Project(Grant No.2022255)Fundamental Research Funds for the Central Universities(Grant No.2662020GXPY017)First Division Alar City Science and Technology Plan Project(Grant No.2023ZB01)for financial support and all of the persons who assisted in this writing.
文摘The discrete element method(DEM)was used in this study to numerically simulate the mixing process and motion law of particles in brown rice germination device.And the reliability of simulation experiments was verified through physical experiments.In the discrete element simulation experiment,there were three mixing stages in the mixing process of the particles.The particle motion conditions at different rotational speeds were rolling,cascading,cataracting and centrifuging.The lower the filling degree,the higher the particle mixing efficiency.The radial trajectory of the particles was approximated as an elliptical helix that continuously shrank towards the axis.The research results indicated that under the same speed and filling conditions,the motion of brown rice particles in both the simulated and physical test environments is rolling and the drop height is the same.