We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists betw...We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists between both alternative gravity formulas with respect to the distances between mass centers. We conclude a one-to-one mapping of the two gravitational formulas. We don’t need Einstein’s construct of spacetime bending by matter.展开更多
In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green fun...In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green function about the operators is also given.展开更多
In 1673, Yoshimasu Murase made a cubic equation to obtain the thickness of a hearth. He introduced two kinds of recurrence formulas of square and the deformation (Ref.[1]). We find that the three formulas lead to the ...In 1673, Yoshimasu Murase made a cubic equation to obtain the thickness of a hearth. He introduced two kinds of recurrence formulas of square and the deformation (Ref.[1]). We find that the three formulas lead to the extension of Newton-Raphson’s method and Horner’s method at the same time. This shows originality of Japanese native mathematics (Wasan) in the Edo era (1600- 1867). Suzuki (Ref.[2]) estimates Murase to be a rare mathematician in not only the history of Wasan but also the history of mathematics in the world. Section 1 introduces Murase’s three solutions of the cubic equation of the hearth. Section 2 explains the Horner’s method. We give the generalization of three formulas and the relation between these formulas and Horner’s method. Section 3 gives definitions of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), general recurrence formula of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), and general recurrence formula of the extension of Murase-Newton’s method (the extension of Tsuchikura-Horiguchi’s method) concerning n-degree polynomial equation. Section 4 is contents of the title of this paper.展开更多
This paper gives the extension of Newton’s method, and a variety of formulas to compare the convergences for the extension of Newton’s method (Section 4). Section 5 gives the numerical calculations. Section 1 introd...This paper gives the extension of Newton’s method, and a variety of formulas to compare the convergences for the extension of Newton’s method (Section 4). Section 5 gives the numerical calculations. Section 1 introduces the three formulas obtained from the cubic equation of a hearth by Murase (Ref. [1]). We find that Murase’s three formulas lead to a Horner’s method (Ref. [2]) and extension of a Newton’s method (2009) at the same time. This shows originality of Wasan (mathematics developed in Japan) in the Edo era (1603-1868). Suzuki (Ref. [3]) estimates Murase to be a rare mathematician in not only the history of Wasan but also the history of mathematics in the world. Section 2 gives the relations between Newton’s method, Horner’s method and Murase’s three formulas. Section 3 gives a new function defined such as .展开更多
文摘We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists between both alternative gravity formulas with respect to the distances between mass centers. We conclude a one-to-one mapping of the two gravitational formulas. We don’t need Einstein’s construct of spacetime bending by matter.
文摘In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green function about the operators is also given.
文摘In 1673, Yoshimasu Murase made a cubic equation to obtain the thickness of a hearth. He introduced two kinds of recurrence formulas of square and the deformation (Ref.[1]). We find that the three formulas lead to the extension of Newton-Raphson’s method and Horner’s method at the same time. This shows originality of Japanese native mathematics (Wasan) in the Edo era (1600- 1867). Suzuki (Ref.[2]) estimates Murase to be a rare mathematician in not only the history of Wasan but also the history of mathematics in the world. Section 1 introduces Murase’s three solutions of the cubic equation of the hearth. Section 2 explains the Horner’s method. We give the generalization of three formulas and the relation between these formulas and Horner’s method. Section 3 gives definitions of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), general recurrence formula of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), and general recurrence formula of the extension of Murase-Newton’s method (the extension of Tsuchikura-Horiguchi’s method) concerning n-degree polynomial equation. Section 4 is contents of the title of this paper.
文摘This paper gives the extension of Newton’s method, and a variety of formulas to compare the convergences for the extension of Newton’s method (Section 4). Section 5 gives the numerical calculations. Section 1 introduces the three formulas obtained from the cubic equation of a hearth by Murase (Ref. [1]). We find that Murase’s three formulas lead to a Horner’s method (Ref. [2]) and extension of a Newton’s method (2009) at the same time. This shows originality of Wasan (mathematics developed in Japan) in the Edo era (1603-1868). Suzuki (Ref. [3]) estimates Murase to be a rare mathematician in not only the history of Wasan but also the history of mathematics in the world. Section 2 gives the relations between Newton’s method, Horner’s method and Murase’s three formulas. Section 3 gives a new function defined such as .