As a simplified, idealized understanding of a physical system the General Relativity model has been highly successful in its gravitational role. However, it fails to address the problem of sufficiently precise measure...As a simplified, idealized understanding of a physical system the General Relativity model has been highly successful in its gravitational role. However, it fails to address the problem of sufficiently precise measurement of “Big G”, the Newtonian Gravitation Constant, and has failed to obtain connection of “Big G” to the rest of physics. Because “Big G” arises naturally from Newton’s treatment of gravitation, this paper elaborates the Modern Newtonian Model of Gravitation and through it resolves the problems of “Big G” at which General Relativity has failed. Specifically: The causes of the problems in measuring “Big G” are resolved, “Big G” is connected to the rest of physics, and a sufficiently precise value of “Big G” is obtained by calculation from other fundamental physical constants. The companion paper The Experimental Data Validation of Modern Newtonian Gravitation over General Relativity Gravitation, which is available in this journal, publishes the results of this paper’s “Part V—Testing the Hypothesis and the Derivation”.展开更多
The paper Connecting Newton’s G With the Rest of Physics-Modern Newtonian Gravitation Resolving the Problem of “Big G’s” Value derived the value of the gravitation constant “Big G”, G of Newton’s Law of Gravita...The paper Connecting Newton’s G With the Rest of Physics-Modern Newtonian Gravitation Resolving the Problem of “Big G’s” Value derived the value of the gravitation constant “Big G”, G of Newton’s Law of Gravitation, directly from other physics fundamental constants but left it to a subsequent paper to experimentally validate the derived G. The present paper performs that validation by examining various past experiments intended to measure “Big G”, in each case determining the acceleration, ag, as found per Einstein’s General Theory of Relativity versus per Modern Newtonian Gravitation for that case. The ratio of those two times the reported measured “Big G” value yields a result identical to the G determined from the derived formulation for G, within the error range of the reported measured “Big G” measurement. That thus validates the correctness of the derived formulation for G. The next important issue, what causes gravitation, how does the effect take place, is addressed and resolved in the paper The Mechanics of Gravitation-What It Is;How It Operates, which is available in this journal.展开更多
From a start of only the limitation on the speed of light, the necessity of conservation, and the impossibility of an infinity in material reality, the present paper presents a comprehensive development of the mechani...From a start of only the limitation on the speed of light, the necessity of conservation, and the impossibility of an infinity in material reality, the present paper presents a comprehensive development of the mechanics, the operation of gravitation. Experience shows that everything has a cause and that those causes are themselves the results of precedent causes, and ad infinitum. Defining and comprehending the causality or mechanism operating to produce any observed behavior is essential to understanding or explaining the behavior. The behavior of gravitation is well known, described by Newton’s Law of Gravitation. But what gravitational mass is, how gravitational behavior comes about, what in material reality produces the effects of gravitation, is little understood. The extant hypotheses include Einstein’s General Relativity’s bending of space, efforts to develop “quantum gravitation”, and attempts to detect “gravitons”. None of those addresses the cause, the mechanism of gravitation. As demonstrated in the present and its prior papers, gravitation is an outward flow from gravitating masses. That means that by manipulating that flow gravitation can be controlled. The procedure for obtaining such control and the design for several various applications are presented in the paper Gravitational and Anti-gravitational Applications which is available in this journal.展开更多
We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckion...We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.展开更多
文摘As a simplified, idealized understanding of a physical system the General Relativity model has been highly successful in its gravitational role. However, it fails to address the problem of sufficiently precise measurement of “Big G”, the Newtonian Gravitation Constant, and has failed to obtain connection of “Big G” to the rest of physics. Because “Big G” arises naturally from Newton’s treatment of gravitation, this paper elaborates the Modern Newtonian Model of Gravitation and through it resolves the problems of “Big G” at which General Relativity has failed. Specifically: The causes of the problems in measuring “Big G” are resolved, “Big G” is connected to the rest of physics, and a sufficiently precise value of “Big G” is obtained by calculation from other fundamental physical constants. The companion paper The Experimental Data Validation of Modern Newtonian Gravitation over General Relativity Gravitation, which is available in this journal, publishes the results of this paper’s “Part V—Testing the Hypothesis and the Derivation”.
文摘The paper Connecting Newton’s G With the Rest of Physics-Modern Newtonian Gravitation Resolving the Problem of “Big G’s” Value derived the value of the gravitation constant “Big G”, G of Newton’s Law of Gravitation, directly from other physics fundamental constants but left it to a subsequent paper to experimentally validate the derived G. The present paper performs that validation by examining various past experiments intended to measure “Big G”, in each case determining the acceleration, ag, as found per Einstein’s General Theory of Relativity versus per Modern Newtonian Gravitation for that case. The ratio of those two times the reported measured “Big G” value yields a result identical to the G determined from the derived formulation for G, within the error range of the reported measured “Big G” measurement. That thus validates the correctness of the derived formulation for G. The next important issue, what causes gravitation, how does the effect take place, is addressed and resolved in the paper The Mechanics of Gravitation-What It Is;How It Operates, which is available in this journal.
文摘From a start of only the limitation on the speed of light, the necessity of conservation, and the impossibility of an infinity in material reality, the present paper presents a comprehensive development of the mechanics, the operation of gravitation. Experience shows that everything has a cause and that those causes are themselves the results of precedent causes, and ad infinitum. Defining and comprehending the causality or mechanism operating to produce any observed behavior is essential to understanding or explaining the behavior. The behavior of gravitation is well known, described by Newton’s Law of Gravitation. But what gravitational mass is, how gravitational behavior comes about, what in material reality produces the effects of gravitation, is little understood. The extant hypotheses include Einstein’s General Relativity’s bending of space, efforts to develop “quantum gravitation”, and attempts to detect “gravitons”. None of those addresses the cause, the mechanism of gravitation. As demonstrated in the present and its prior papers, gravitation is an outward flow from gravitating masses. That means that by manipulating that flow gravitation can be controlled. The procedure for obtaining such control and the design for several various applications are presented in the paper Gravitational and Anti-gravitational Applications which is available in this journal.
文摘We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.