The goal here is to give a simple approach to a quadrature formula based on the divided diffierences of the integrand at the zeros of the nth Chebyshev polynomial of the first kind,and those of the(n-1)st Chebyshev po...The goal here is to give a simple approach to a quadrature formula based on the divided diffierences of the integrand at the zeros of the nth Chebyshev polynomial of the first kind,and those of the(n-1)st Chebyshev polynomial of the second kind.Explicit expressions for the corresponding coefficients of the quadrature rule are also found after expansions of the divided diffierences,which was proposed in[14].展开更多
In this paper, three types of three-parameters families of quadrature formulas for the Riemann’s integral on an interval of the real line are carefully studied. This research is a continuation of the results in the [...In this paper, three types of three-parameters families of quadrature formulas for the Riemann’s integral on an interval of the real line are carefully studied. This research is a continuation of the results in the [1]-[3]. All these quadrature formulas are not based on the integration of an interpolant as so as the Gregory rule, a well-known example in numerical quadrature of a trapezoidal rule with endpoint corrections of a given order (see [4]). In some natural restrictions on the parameters we construct the only one quadrature formula of the eight order which belongs to the first, second and third family. For functions whose 8th derivative is either always positive or always negative, we use these quadrature formulas to get good two-sided bound on . Additionally, we apply these quadratures to obtain the approximate sum of slowly convergent series , where .展开更多
Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also gi...Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.展开更多
This paper develops a clase of quadrature formula with first derivativesIt is demonstrated that its degree of accuracy is not less than 2k+1 for a set of distinct nodes {x0,x1,...,xn} over interval [a,b],and just only...This paper develops a clase of quadrature formula with first derivativesIt is demonstrated that its degree of accuracy is not less than 2k+1 for a set of distinct nodes {x0,x1,...,xn} over interval [a,b],and just only 2k+1 for equally spaced nodes.Far overcoming the shortcoming of involving a great number of manual computations for the integration rules of the Hermitian interpolation formula,some simple formulas for computing automatically βi,γi and E [f] by computer are given,especially for equally spaced nodes.展开更多
A generalized Gauss-type quadrature formula is introduced, which assists in selection of collocation points in pseudospectral method for differential equations with two-point derivative boundary conditions. Some resul...A generalized Gauss-type quadrature formula is introduced, which assists in selection of collocation points in pseudospectral method for differential equations with two-point derivative boundary conditions. Some results on the related Jacobi interpolation are established. A pseudospectral scheme is proposed for the Kuramoto-Sivashisky equation. A skew symmetric decomposition is used for dealing with the nonlinear convection term. The stability and convergence of the proposed scheme are proved. The error estimates are obtained. Numerical results show the efficiency of this approach.展开更多
We construct a quadrature formula of the singular integral with the Chebyshev weight of the second kind by using Lagrange interpolation based on the rational system {1/(x?a 1), 1/(x?a 2), …}, and both the remainder a...We construct a quadrature formula of the singular integral with the Chebyshev weight of the second kind by using Lagrange interpolation based on the rational system {1/(x?a 1), 1/(x?a 2), …}, and both the remainder and convergence of the quadrature formula established here are discussed. Our results extend some classical ones.展开更多
The purpose of this paper is to study the maximum trigonometric degree of the quadrature formula associated with m prescribed nodes and n unknown additional nodes in the interval(-π, π]. We show that for a fixed n,...The purpose of this paper is to study the maximum trigonometric degree of the quadrature formula associated with m prescribed nodes and n unknown additional nodes in the interval(-π, π]. We show that for a fixed n, the quadrature formulae with m and m + 1 prescribed nodes share the same maximum degree if m is odd. We also give necessary and sufficient conditions for all the additional nodes to be real, pairwise distinct and in the interval(-π, π] for even m, which can be obtained constructively. Some numerical examples are given by choosing the prescribed nodes to be the zeros of Chebyshev polynomials of the second kind or randomly for m ≥ 3.展开更多
We consider the computation of the. Cauchy principal value mtegral by quadrature formulaeof compound type, which are obtained by replacing f by a piecewise defined function F,[;]. The behaviour of the constants m the ...We consider the computation of the. Cauchy principal value mtegral by quadrature formulaeof compound type, which are obtained by replacing f by a piecewise defined function F,[;]. The behaviour of the constants m the estimates where quadrature error) is determined for fixed i and which means that not only the. order, but also the coefficient of the main term of is determined. The behaviour of these error constants is compared -with the corresponding ones obtained for the. method of subtraction of the singularity. As it turns out, these error constants have, in general, the same asymptotic behaviour.展开更多
In this paper,we study the optimal quadrature problem with Hermite-Birkhoff type,on the Sobolev class(R)defined on whole red axis,and we give an optimal algorithm and determite its optimal error.
Methods for the approximation of solution of nonlinear system of equations often fail when the Jacobians of the systems are singular at iteration points. In this paper, multi-step families of quadrature based iterativ...Methods for the approximation of solution of nonlinear system of equations often fail when the Jacobians of the systems are singular at iteration points. In this paper, multi-step families of quadrature based iterative methods for approximating the solution of nonlinear system of equations with singular Jacobian are developed using decomposition technique. The methods proposed in this study are of convergence order , and require only the evaluation of first-order Frechet derivative per iteration. The approximate solutions generated by the proposed iterative methods in this paper compared with some existing contemporary methods in literature, show that methods developed herein are efficient and adequate in approximating the solution of nonlinear system of equations whose Jacobians are singular and non-singular at iteration points.展开更多
A new family of numerical integration formula is presented, which uses the function evaluation at the midpoint of the interval and odd derivatives at the endpoints. Because the weights for the odd derivatives sum to z...A new family of numerical integration formula is presented, which uses the function evaluation at the midpoint of the interval and odd derivatives at the endpoints. Because the weights for the odd derivatives sum to zero, the derivative calculations cancel out for the interior points in the composite form, so that these derivatives must only be calculated at the endpoints of the overall interval of integration. When using N subintervals, the basic rule which uses the midpoint function evaluation and the first derivative at the endpoints achieves fourth order accuracy for the cost of N/2 function evaluations and 2 derivative evaluations, whereas the three point open Newton-Cotes method uses 3N/4 function evaluations to achieve the same order of accuracy. These derivative-based midpoint quadrature methods are shown to be more computationally efficient than both the open and closed Newton-Cotes quadrature rules of the same order. This family of derivative-based midpoint quadrature rules are derived using the concept of precision, along with the error term. A theorem concerning the order of accuracy of quadrature rule using the concept of precision is provided to justify its use to determine the leading order error term.展开更多
Explicit expressions of the Cotes numbers of the generalized Gaussian quadrature formulas for the Chebyshev nodes (of the first kind and the second kind) and their asymptotic behavior are given.
The main purpose of this work is to find for any non-negative measure, the relations between the Gauss-Radau and Gauss-Lobatto formula and Gauss formulae for the same measure. As applications, the author obtained the ...The main purpose of this work is to find for any non-negative measure, the relations between the Gauss-Radau and Gauss-Lobatto formula and Gauss formulae for the same measure. As applications, the author obtained the explicit Gauss-Radau and Gauss-Lobatto formulae for the Jacobi weight and the Gori-Micchelli weight.展开更多
Quadrature formulas are considered for classes of smooth functions Wpr, Bpr,(?) with bounded mixed derivative or difference. For the classes of functions indicated above, the result that quadrature formulas constructe...Quadrature formulas are considered for classes of smooth functions Wpr, Bpr,(?) with bounded mixed derivative or difference. For the classes of functions indicated above, the result that quadrature formulas constructed with the help of number-theoretic methods are optimal (in the sense of order) is proved, and the optimal order of the error estimates is obtained.展开更多
Discusses an extremal problem with Birkhoff interpolation constraints. Quadrature formula derived from an extremal problem; Overview of auxiliary lemmas; Derivation of some properties of polynomials.
This paper proves that the optimal quadrature formulas of type(r<sub>1</sub>,…r<sub>n</sub>) for W<sup>m</sup><sub>1</sub> isunique,and the extremal function is chara...This paper proves that the optimal quadrature formulas of type(r<sub>1</sub>,…r<sub>n</sub>) for W<sup>m</sup><sub>1</sub> isunique,and the extremal function is characterized by its oscillatory property.On theother hand,the fundamental theorem of algebra for periodic monosplines with oddmultiplicities is展开更多
In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I (a,b), a function G E S(w)= (f: fxlf(x)lw(x)dx 〈 ∞ satisfying the ...In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I (a,b), a function G E S(w)= (f: fxlf(x)lw(x)dx 〈 ∞ satisfying the conditions G(2J)(x) :〉 O, x E (a,b), j = 0, 1 , and growing as fast as possible as x→ a- and x → b-, plays an important role. But to find such a function G is often difficult and complicated. This implies that to prove convergence of Gaussian quadrature formulas, it is enough to find a function G E S(w) with G ≥ 0 satisfying展开更多
In the present paper some multi-dimensional quadrature formulas of periodic functions are established by means of the number-theoretic method.Some results of Hua and Wang are generalized or improved.
基金Supported by the National Natural Science Foundation of China(10571121) Supported by the Natural Science Foundation of Guangdong Province(5010509)
文摘The goal here is to give a simple approach to a quadrature formula based on the divided diffierences of the integrand at the zeros of the nth Chebyshev polynomial of the first kind,and those of the(n-1)st Chebyshev polynomial of the second kind.Explicit expressions for the corresponding coefficients of the quadrature rule are also found after expansions of the divided diffierences,which was proposed in[14].
文摘In this paper, three types of three-parameters families of quadrature formulas for the Riemann’s integral on an interval of the real line are carefully studied. This research is a continuation of the results in the [1]-[3]. All these quadrature formulas are not based on the integration of an interpolant as so as the Gregory rule, a well-known example in numerical quadrature of a trapezoidal rule with endpoint corrections of a given order (see [4]). In some natural restrictions on the parameters we construct the only one quadrature formula of the eight order which belongs to the first, second and third family. For functions whose 8th derivative is either always positive or always negative, we use these quadrature formulas to get good two-sided bound on . Additionally, we apply these quadratures to obtain the approximate sum of slowly convergent series , where .
基金Supported by NNSF and RFDP of Higher Education of China.
文摘Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.
文摘This paper develops a clase of quadrature formula with first derivativesIt is demonstrated that its degree of accuracy is not less than 2k+1 for a set of distinct nodes {x0,x1,...,xn} over interval [a,b],and just only 2k+1 for equally spaced nodes.Far overcoming the shortcoming of involving a great number of manual computations for the integration rules of the Hermitian interpolation formula,some simple formulas for computing automatically βi,γi and E [f] by computer are given,especially for equally spaced nodes.
文摘A generalized Gauss-type quadrature formula is introduced, which assists in selection of collocation points in pseudospectral method for differential equations with two-point derivative boundary conditions. Some results on the related Jacobi interpolation are established. A pseudospectral scheme is proposed for the Kuramoto-Sivashisky equation. A skew symmetric decomposition is used for dealing with the nonlinear convection term. The stability and convergence of the proposed scheme are proved. The error estimates are obtained. Numerical results show the efficiency of this approach.
文摘We construct a quadrature formula of the singular integral with the Chebyshev weight of the second kind by using Lagrange interpolation based on the rational system {1/(x?a 1), 1/(x?a 2), …}, and both the remainder and convergence of the quadrature formula established here are discussed. Our results extend some classical ones.
基金The NSF (61033012,10801023,10911140268 and 10771028) of China
文摘The purpose of this paper is to study the maximum trigonometric degree of the quadrature formula associated with m prescribed nodes and n unknown additional nodes in the interval(-π, π]. We show that for a fixed n, the quadrature formulae with m and m + 1 prescribed nodes share the same maximum degree if m is odd. We also give necessary and sufficient conditions for all the additional nodes to be real, pairwise distinct and in the interval(-π, π] for even m, which can be obtained constructively. Some numerical examples are given by choosing the prescribed nodes to be the zeros of Chebyshev polynomials of the second kind or randomly for m ≥ 3.
文摘We consider the computation of the. Cauchy principal value mtegral by quadrature formulaeof compound type, which are obtained by replacing f by a piecewise defined function F,[;]. The behaviour of the constants m the estimates where quadrature error) is determined for fixed i and which means that not only the. order, but also the coefficient of the main term of is determined. The behaviour of these error constants is compared -with the corresponding ones obtained for the. method of subtraction of the singularity. As it turns out, these error constants have, in general, the same asymptotic behaviour.
文摘In this paper,we study the optimal quadrature problem with Hermite-Birkhoff type,on the Sobolev class(R)defined on whole red axis,and we give an optimal algorithm and determite its optimal error.
文摘Methods for the approximation of solution of nonlinear system of equations often fail when the Jacobians of the systems are singular at iteration points. In this paper, multi-step families of quadrature based iterative methods for approximating the solution of nonlinear system of equations with singular Jacobian are developed using decomposition technique. The methods proposed in this study are of convergence order , and require only the evaluation of first-order Frechet derivative per iteration. The approximate solutions generated by the proposed iterative methods in this paper compared with some existing contemporary methods in literature, show that methods developed herein are efficient and adequate in approximating the solution of nonlinear system of equations whose Jacobians are singular and non-singular at iteration points.
文摘A new family of numerical integration formula is presented, which uses the function evaluation at the midpoint of the interval and odd derivatives at the endpoints. Because the weights for the odd derivatives sum to zero, the derivative calculations cancel out for the interior points in the composite form, so that these derivatives must only be calculated at the endpoints of the overall interval of integration. When using N subintervals, the basic rule which uses the midpoint function evaluation and the first derivative at the endpoints achieves fourth order accuracy for the cost of N/2 function evaluations and 2 derivative evaluations, whereas the three point open Newton-Cotes method uses 3N/4 function evaluations to achieve the same order of accuracy. These derivative-based midpoint quadrature methods are shown to be more computationally efficient than both the open and closed Newton-Cotes quadrature rules of the same order. This family of derivative-based midpoint quadrature rules are derived using the concept of precision, along with the error term. A theorem concerning the order of accuracy of quadrature rule using the concept of precision is provided to justify its use to determine the leading order error term.
文摘Explicit expressions of the Cotes numbers of the generalized Gaussian quadrature formulas for the Chebyshev nodes (of the first kind and the second kind) and their asymptotic behavior are given.
文摘The main purpose of this work is to find for any non-negative measure, the relations between the Gauss-Radau and Gauss-Lobatto formula and Gauss formulae for the same measure. As applications, the author obtained the explicit Gauss-Radau and Gauss-Lobatto formulae for the Jacobi weight and the Gori-Micchelli weight.
基金Project supported by the National Natural Science Foundation of China and the Doctoral Program Foundation of the State Education Commission of China.
文摘Quadrature formulas are considered for classes of smooth functions Wpr, Bpr,(?) with bounded mixed derivative or difference. For the classes of functions indicated above, the result that quadrature formulas constructed with the help of number-theoretic methods are optimal (in the sense of order) is proved, and the optimal order of the error estimates is obtained.
文摘Discusses an extremal problem with Birkhoff interpolation constraints. Quadrature formula derived from an extremal problem; Overview of auxiliary lemmas; Derivation of some properties of polynomials.
文摘This paper proves that the optimal quadrature formulas of type(r<sub>1</sub>,…r<sub>n</sub>) for W<sup>m</sup><sub>1</sub> isunique,and the extremal function is characterized by its oscillatory property.On theother hand,the fundamental theorem of algebra for periodic monosplines with oddmultiplicities is
基金Project supported by the National Natural Science Foundation of China (Nos. 11171100,10871065,11071064)the Hunan Provincial Natural Science Foundation of China (No. 10JJ3089)the Scientific Research Fund of Hunan Provincial Education Department (No. 11W012)
文摘In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I (a,b), a function G E S(w)= (f: fxlf(x)lw(x)dx 〈 ∞ satisfying the conditions G(2J)(x) :〉 O, x E (a,b), j = 0, 1 , and growing as fast as possible as x→ a- and x → b-, plays an important role. But to find such a function G is often difficult and complicated. This implies that to prove convergence of Gaussian quadrature formulas, it is enough to find a function G E S(w) with G ≥ 0 satisfying
基金This project is supported by the National Natural Science Foundation of China
文摘In the present paper some multi-dimensional quadrature formulas of periodic functions are established by means of the number-theoretic method.Some results of Hua and Wang are generalized or improved.