Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for...Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development.展开更多
Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning probl...Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning problem and modeled this problem as a variant of the travel salesman problem(TSP)with life-strength constraints.To address this problem,we proposed an improved iterated greedy(IIG)algorithm.First,a push-forward insertion heuristic(PFIH)strategy was employed to generate a high-quality initial solution.Second,a greedy-based insertion strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ability.Furthermore,three problem-specific swap operators were developed to improve the algorithm’s exploitation ability.Additionally,an improved simulated annealing(SA)strategy was used as an acceptance criterion to effectively prevent the algorithm from falling into local optima.To verify the effectiveness of the proposed algorithm,the Solomon dataset was extended to generate 27 instances for simulation.Finally,the proposed IIG was compared with five state-of-the-art algorithms.The parameter analysiswas conducted using the design of experiments(DOE)Taguchi method,and the effectiveness analysis of each component has been verified one by one.Simulation results indicate that IIGoutperforms the compared algorithms in terms of the number of rescue survivors and convergence speed,proving the effectiveness of the proposed algorithm.展开更多
Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the...Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively.展开更多
Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N)...Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.展开更多
In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinea...In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.展开更多
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in...For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.展开更多
To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morpho...To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method.展开更多
In this paper, on the basis of von Karman large deflection equations and its double trigonometric series solution, we present a simple, fast and effective iteration algorithm for solving simply-supported rectangular p...In this paper, on the basis of von Karman large deflection equations and its double trigonometric series solution, we present a simple, fast and effective iteration algorithm for solving simply-supported rectangular plate subjected to biaxial compression.展开更多
In this work, approximate analytical solutions to the lid-driven square cavity flow problem, which satisfied two-dimensional unsteady incompressible Navier-Stokes equations, are presented using the kinetically reduced...In this work, approximate analytical solutions to the lid-driven square cavity flow problem, which satisfied two-dimensional unsteady incompressible Navier-Stokes equations, are presented using the kinetically reduced local Navier-Stokes equations. Reduced differential transform method and perturbation-iteration algorithm are applied to solve this problem. The convergence analysis was discussed for both methods. The numerical results of both methods are given at some Reynolds numbers and low Mach numbers, and compared with results of earlier studies in the review of the literatures. These two methods are easy and fast to implement, and the results are close to each other and other numerical results, so it can be said that these methods are useful in finding approximate analytical solutions to the unsteady incompressible flow problems at low Mach numbers.展开更多
An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programmin...An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.展开更多
The one-bit compressed sensing problem is of fundamental importance in many areas,such as wireless communication,statistics,and so on.However,the optimization of one-bit problem coustrained on the unit sphere lacks an...The one-bit compressed sensing problem is of fundamental importance in many areas,such as wireless communication,statistics,and so on.However,the optimization of one-bit problem coustrained on the unit sphere lacks an algorithm with rigorous mathematical proof of convergence and validity.In this paper,an iteration algorithm is established based on difference-of-convex algorithm for the one-bit compressed sensing problem constrained on the unit sphere,with iterating formula■,where C is the convex cone generated by the one-bit measurements andη_(1)>η_(2)>1/2.The new algorithm is proved to converge as long as the initial point is on the unit sphere and accords with the measurements,and the convergence to the global minimum point of the l_(1)norm is discussed.展开更多
The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this prob...The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.展开更多
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags...Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algo- rithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% com- putational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.展开更多
In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite...In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite element simulation is an e ective method to predict the springback of complex shape parts, but its precision is sensitive to the simulation model, particularly material model and boundary conditions. In this paper, the simple iterative method is introduced to establish the iterative compensation algorithm, and the convergence criterion of iterative parameters is put forward. In addition, the new algorithm is applied to the V-free bending and stretch-bending processes, and the convergence of curvature and bending angle is proved theoretically and verified experimentally. At the same time,the iterative compensation experiments for plane bending show that, the new method can predict the next compensaantido tnh ev atlaureg ebta cseurdv oatnu trhe ew sitphri tnhgeb earcrko ro fo fe laecshs ttehsat,n s0 o. 5 th%a ta rteh eo btatraigneet db aefntedri n2 g-3 a nitgelrea tiwoitnhs.t Thhei se rrreosre aorf clhe sps rtohpaons e±s 0 a.1%new iterative compensation algorithm to predict springback in sheet metal forming process, where each compensation value depends only on the iteration parameter di erence before and after springback for the same forming process of same material.展开更多
A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is ...A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.展开更多
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys...For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.展开更多
In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared wi...In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.展开更多
For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. ...For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.展开更多
文摘Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development.
基金supported by the Opening Fund of Shandong Provincial Key Laboratory of Network based Intelligent Computing,the National Natural Science Foundation of China(52205529,61803192)the Natural Science Foundation of Shandong Province(ZR2021QE195)+1 种基金the Youth Innovation Team Program of Shandong Higher Education Institution(2023KJ206)the Guangyue Youth Scholar Innovation Talent Program support received from Liaocheng University(LCUGYTD2022-03).
文摘Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning problem and modeled this problem as a variant of the travel salesman problem(TSP)with life-strength constraints.To address this problem,we proposed an improved iterated greedy(IIG)algorithm.First,a push-forward insertion heuristic(PFIH)strategy was employed to generate a high-quality initial solution.Second,a greedy-based insertion strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ability.Furthermore,three problem-specific swap operators were developed to improve the algorithm’s exploitation ability.Additionally,an improved simulated annealing(SA)strategy was used as an acceptance criterion to effectively prevent the algorithm from falling into local optima.To verify the effectiveness of the proposed algorithm,the Solomon dataset was extended to generate 27 instances for simulation.Finally,the proposed IIG was compared with five state-of-the-art algorithms.The parameter analysiswas conducted using the design of experiments(DOE)Taguchi method,and the effectiveness analysis of each component has been verified one by one.Simulation results indicate that IIGoutperforms the compared algorithms in terms of the number of rescue survivors and convergence speed,proving the effectiveness of the proposed algorithm.
基金supported by the Natural Science Foundation of China (U22A20214)。
文摘Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively.
文摘Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.
基金supported by National Foundation of Natural Science under the Grant 11071216
文摘In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.
基金supported by the National Natural Science Foundation of China (62173333, 12271522)Beijing Natural Science Foundation (Z210002)the Research Fund of Renmin University of China (2021030187)。
文摘For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.
基金supported by Natural Science Foundation of Jilin Province(YDZJ202401352ZYTS).
文摘To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method.
文摘In this paper, on the basis of von Karman large deflection equations and its double trigonometric series solution, we present a simple, fast and effective iteration algorithm for solving simply-supported rectangular plate subjected to biaxial compression.
文摘In this work, approximate analytical solutions to the lid-driven square cavity flow problem, which satisfied two-dimensional unsteady incompressible Navier-Stokes equations, are presented using the kinetically reduced local Navier-Stokes equations. Reduced differential transform method and perturbation-iteration algorithm are applied to solve this problem. The convergence analysis was discussed for both methods. The numerical results of both methods are given at some Reynolds numbers and low Mach numbers, and compared with results of earlier studies in the review of the literatures. These two methods are easy and fast to implement, and the results are close to each other and other numerical results, so it can be said that these methods are useful in finding approximate analytical solutions to the unsteady incompressible flow problems at low Mach numbers.
基金The National Natural Science Foundation of China(No. 50908235 )China Postdoctoral Science Foundation (No.201003520)
文摘An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Nos.12171496,12171490,11971491 and U1811461)Guangdong Basic and Applied Basic Research Foundation(2024A1515012057)。
文摘The one-bit compressed sensing problem is of fundamental importance in many areas,such as wireless communication,statistics,and so on.However,the optimization of one-bit problem coustrained on the unit sphere lacks an algorithm with rigorous mathematical proof of convergence and validity.In this paper,an iteration algorithm is established based on difference-of-convex algorithm for the one-bit compressed sensing problem constrained on the unit sphere,with iterating formula■,where C is the convex cone generated by the one-bit measurements andη_(1)>η_(2)>1/2.The new algorithm is proved to converge as long as the initial point is on the unit sphere and accords with the measurements,and the convergence to the global minimum point of the l_(1)norm is discussed.
基金supported in part by the National Natural Science Foundation of China(61627811,61573274,61673126,U1701261)
文摘The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.
基金Supported by National Natural Science Foundation of China(Grant No.71301008)Beijing Municipal Natural Science Foundation of China(Grant No.9144030)
文摘Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algo- rithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% com- putational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
基金Supported by Hebei Provincial Natural Science Foundation of in China(Grant Nos.E2015203244,E2016203266)Program for the Youth Top-notch Talents of Hebei Province
文摘In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite element simulation is an e ective method to predict the springback of complex shape parts, but its precision is sensitive to the simulation model, particularly material model and boundary conditions. In this paper, the simple iterative method is introduced to establish the iterative compensation algorithm, and the convergence criterion of iterative parameters is put forward. In addition, the new algorithm is applied to the V-free bending and stretch-bending processes, and the convergence of curvature and bending angle is proved theoretically and verified experimentally. At the same time,the iterative compensation experiments for plane bending show that, the new method can predict the next compensaantido tnh ev atlaureg ebta cseurdv oatnu trhe ew sitphri tnhgeb earcrko ro fo fe laecshs ttehsat,n s0 o. 5 th%a ta rteh eo btatraigneet db aefntedri n2 g-3 a nitgelrea tiwoitnhs.t Thhei se rrreosre aorf clhe sps rtohpaons e±s 0 a.1%new iterative compensation algorithm to predict springback in sheet metal forming process, where each compensation value depends only on the iteration parameter di erence before and after springback for the same forming process of same material.
基金supported by the National Outstanding Young Scientists Fund of China (No. 10725209)the National ScienceFoundation of China (No. 10672092)+1 种基金Shanghai Municipal Education Commission Scientific Research Project (No. 07ZZ07)Shanghai Leading Academic Discipline Project (No. Y0103).
文摘A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.
基金supported by the National Natural Science Foundation of China(61273070,61203092)the Enterprise-college-institute Cooperative Project of Jiangsu Province(BY2015019-21)+1 种基金111 Project(B12018)the Fun-damental Research Funds for the Central Universities(JUSRP51733B)
文摘For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074), and the Special Funds for Major Specialities of Shanghai Education Commission (Grant No.J50101)
文摘In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.
基金Project supported by the National Natural Science Foundation of China(Grant No.60972046)Grant from the National Defense Pre-Research Foundation of China
文摘For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.