In this paper, we consider a second order multivalued iterative equation with variable coefficients and the results on increasing solution and decreasing solution are obtained.
By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this pape...By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this paper extend and improve recent results.展开更多
The iterative solution for a class of multivalued monotone operator equations just like A(u)∈-B(u) is discussed, where A is a positive definite linear single valued operator, B is a bounded and m...The iterative solution for a class of multivalued monotone operator equations just like A(u)∈-B(u) is discussed, where A is a positive definite linear single valued operator, B is a bounded and monotone multivalued operator. The existence and convergence of approximate solutions are proved. The method of numerical realization is demonstrated in some examples.展开更多
Using the cone and partial ordering theory and mixed monotone operator theory, the existence and uniqueness of solutions for some classes of systems of nonlinear two binary operator equations in a Banach space with a ...Using the cone and partial ordering theory and mixed monotone operator theory, the existence and uniqueness of solutions for some classes of systems of nonlinear two binary operator equations in a Banach space with a partial ordering are discussed. And the error estimates that the iterative sequences converge to solutions are also given. Some relevant results of solvability of two binary operator equations and systems of operator equations are improved and generalized.展开更多
Data coming from different sources have different types and temporal states. Relations between one type of data and another ones, or between data and unknown parameters are almost nonlinear. It is not accurate and rel...Data coming from different sources have different types and temporal states. Relations between one type of data and another ones, or between data and unknown parameters are almost nonlinear. It is not accurate and reliable to process the data in building the digital earth with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method was put forward to process data in building the digital earth. A separating solution model and the iterative calculation method were used to solve the generalized nonlinear dynamic least squares problem. In fact, a complex problem can be separated and then solved by converting to two sub problems, each of which has a single variable. Therefore the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations.展开更多
The convergent iterative procedure for solving the groundstate Schrodinger equation is extended to derive the excitation energy and the wavefunction of the low-lying excited states. The method is applied to the one-di...The convergent iterative procedure for solving the groundstate Schrodinger equation is extended to derive the excitation energy and the wavefunction of the low-lying excited states. The method is applied to the one-dimensional quartic potential problem. The results show that the iterative solution converges rapidly when the coupling g is not too small.展开更多
The newly developed iterative method based on Green function defined by quadratures along a single trajectory is combined with the variational method to solve the ground state quantum wave function for central potenti...The newly developed iterative method based on Green function defined by quadratures along a single trajectory is combined with the variational method to solve the ground state quantum wave function for central potentials.As an example, the method is applied to discuss the ground state solution of Yukawa potential, using Hulthen solution as the trial function.展开更多
This paper addresses the problem for solving a Continuous-time Riccati equation with an indefinite sign of the quadratic term. Such an equation is closely related to the so called full information H∞ control of linea...This paper addresses the problem for solving a Continuous-time Riccati equation with an indefinite sign of the quadratic term. Such an equation is closely related to the so called full information H∞ control of linear time-invariant system with external disturbance. Recently, a simultaneous policy update algorithm (SPUA) for solving H∞ control problems is proposed by Wu and Luo (Simultaneous policy update algorithms for learning the solution of linear continuous-time H∞ state feedback control, Information Sciences, 222, 472-485, 2013). However, the crucial point of their method is to find an initial point, which ensuring the convergence of the method. We will show one example where Wu and Luo’s method is not effective and it converges to an indefinite solution. Three effective methods for computing the stabilizing solution to the considered equation are investigated. Computer realizations of the presented methods are numerically compared on the computational platforms MATLAB and SCILAB.展开更多
The revised new iterative method for solving the ground state of Schroedingerequation is deduced. Based on Green functions defined by quadratures along a single trajectory thisiterative method is applied to solve the ...The revised new iterative method for solving the ground state of Schroedingerequation is deduced. Based on Green functions defined by quadratures along a single trajectory thisiterative method is applied to solve the ground state of the double-well potential. The result iscompared to the one based on the original iterative method. The limitation of the asymptoticexpansion is also discussed.展开更多
To solve the wave functions and energies of the groundstate of H+2 ion an iteration procedure for N- dimensional potentials is applied. The iterative solutions are convergent nicely, which are comparable to earlier r...To solve the wave functions and energies of the groundstate of H+2 ion an iteration procedure for N- dimensional potentials is applied. The iterative solutions are convergent nicely, which are comparable to earlier results based on variational methods.展开更多
Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. Write A(D,D)={f: f is a continuous map from D into itself, and ...Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. Write A(D,D)={f: f is a continuous map from D into itself, and f|D ° is analytic}. Suppose G,H: D 2n+1 →C are continuous maps (n≥2), and G|(D 2n+1 ) °, H|(D 2n+1 ) ° are analytic. In this paper, we study the system of iterative functional equationsG(z,f(z),…,f n(z), g(z),…,g n(z))=0, H(z,f(z),…,f n(z), g(z),…,g n(z))=0, for any z∈D,and give some conditions for the system of equations to have a solution or a unique solution in A(D,D) ×A(D,D).展开更多
The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied....The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.展开更多
One of the advantages of the variational iteration method is the free choice of initial guess. In this paper we use the basic idea of the Jacobian-function method to construct a generalized trial function with some un...One of the advantages of the variational iteration method is the free choice of initial guess. In this paper we use the basic idea of the Jacobian-function method to construct a generalized trial function with some unknown parameters. The Jaulent-Miodek equations are used to illustrate effectiveness and convenience of this method, some new explicit exact travelling wave solutions have been obtained, which include bell-type soliton solution, kink-type soliton solutions, solitary wave solutions, and doubly periodic wave solutions.展开更多
In this paper, we consider the iterated equationλ1f(x) + λ2f2(x)=F(x)where f2(x)= f(f(x)), F (x) denotes known function and f(x) denotes the unknown function. There are given conditions for the existence, uniqueness...In this paper, we consider the iterated equationλ1f(x) + λ2f2(x)=F(x)where f2(x)= f(f(x)), F (x) denotes known function and f(x) denotes the unknown function. There are given conditions for the existence, uniqueness and stability of C'-solutions ofthe iterated equation (*) and also there is a proved theorem for the continuous dependence of Cr-solutions of iterated equation (*) on the given function.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
Ln this paper, the super-inverse iterative method is proposed to compute the accurate and complete eigen-solutions for anti-plane cracks/notches with multi-materials, arbitrary opening angles and various surface condi...Ln this paper, the super-inverse iterative method is proposed to compute the accurate and complete eigen-solutions for anti-plane cracks/notches with multi-materials, arbitrary opening angles and various surface conditions. Taking the advantage of the knowledge of the variation forms of the eigen-functions, a series of numerical techniques are proposed to simplify the computation and speed up the convergence rare of the inverse iteration. A number of numerical examples are given to demonstrate the excellent accuracy, efficiency and reliability of the proposed approach.展开更多
Various mixed formulations of the finite element method (FEM) yield matrix equations involving zero diagonal entries. They are then dealt with by a penaltymethod so that they become non-zero but near zero terms. Howev...Various mixed formulations of the finite element method (FEM) yield matrix equations involving zero diagonal entries. They are then dealt with by a penaltymethod so that they become non-zero but near zero terms. However, the penalty has tobe chosen properly. If it is too large, the matrix equation may become ill-conditioned. Onthe other hand, the matrix equation may give incorrect answer if the penalty is too small.In non-linear regime, the difficulty is more serious because the magnitude order of the matrix varies considerably in the entire loading history. The paper suggests an iteration solution and applies it to non-linear FEM of rubber-like hyper-elasticity. This type of analysisis highly non-linear both in physics and in geometry as well as the strong constraint of incompressibility. The iteration solution is demonstrated to possess super precision and excellent convergence characteristics.展开更多
In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most inte...In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most interesting features of the proposed methods are its extreme simplicity and concise forms of iteration formula for a wide range of nonlinear problems.展开更多
In this paper, we extend variational iteration method (VIM) to find approximate solutions of linear and nonlinear thirteenth order differential equations in boundary value problems. The method is based on boundary val...In this paper, we extend variational iteration method (VIM) to find approximate solutions of linear and nonlinear thirteenth order differential equations in boundary value problems. The method is based on boundary valued problems. Two numerical examples are presented for the numerical illustration of the method and their results are compared with those considered by [1,2]. The results reveal that VIM is very effective and highly promising in comparison with other numerical methods.展开更多
基金Foundation item: Supported by the PhD Start-up Fund of the Natural Science Foundation of Guangdong Province(S2011040000464) Supported by the Project of Department of Education of Guangdong Province(2012KJCX0074)+1 种基金 Supported by the Natural Fund of Zhanjiang Normal University(LZL1101) Supported by the Doctoral Project of Zhanjiang Normal University(ZL1101) Acknowledgment The authors are grateful to Dr Shengfu Deng for his helpful discussion and suggestion.
文摘In this paper, we consider a second order multivalued iterative equation with variable coefficients and the results on increasing solution and decreasing solution are obtained.
文摘By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this paper extend and improve recent results.
文摘The iterative solution for a class of multivalued monotone operator equations just like A(u)∈-B(u) is discussed, where A is a positive definite linear single valued operator, B is a bounded and monotone multivalued operator. The existence and convergence of approximate solutions are proved. The method of numerical realization is demonstrated in some examples.
基金Supported by the Important Science Foundation of Henan Education Commission(2000110019)Supported by the Natural Science Foundation of Shangqiu(200211125)
文摘Using the cone and partial ordering theory and mixed monotone operator theory, the existence and uniqueness of solutions for some classes of systems of nonlinear two binary operator equations in a Banach space with a partial ordering are discussed. And the error estimates that the iterative sequences converge to solutions are also given. Some relevant results of solvability of two binary operator equations and systems of operator equations are improved and generalized.
文摘Data coming from different sources have different types and temporal states. Relations between one type of data and another ones, or between data and unknown parameters are almost nonlinear. It is not accurate and reliable to process the data in building the digital earth with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method was put forward to process data in building the digital earth. A separating solution model and the iterative calculation method were used to solve the generalized nonlinear dynamic least squares problem. In fact, a complex problem can be separated and then solved by converting to two sub problems, each of which has a single variable. Therefore the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations.
基金This research was supported in part by the U.S. Department of Energy (Grant No DE-FG02-92ER-40699) and the National Natural Science Foundation of China (Grant No 10547001).
文摘The convergent iterative procedure for solving the groundstate Schrodinger equation is extended to derive the excitation energy and the wavefunction of the low-lying excited states. The method is applied to the one-dimensional quartic potential problem. The results show that the iterative solution converges rapidly when the coupling g is not too small.
文摘The newly developed iterative method based on Green function defined by quadratures along a single trajectory is combined with the variational method to solve the ground state quantum wave function for central potentials.As an example, the method is applied to discuss the ground state solution of Yukawa potential, using Hulthen solution as the trial function.
文摘This paper addresses the problem for solving a Continuous-time Riccati equation with an indefinite sign of the quadratic term. Such an equation is closely related to the so called full information H∞ control of linear time-invariant system with external disturbance. Recently, a simultaneous policy update algorithm (SPUA) for solving H∞ control problems is proposed by Wu and Luo (Simultaneous policy update algorithms for learning the solution of linear continuous-time H∞ state feedback control, Information Sciences, 222, 472-485, 2013). However, the crucial point of their method is to find an initial point, which ensuring the convergence of the method. We will show one example where Wu and Luo’s method is not effective and it converges to an indefinite solution. Three effective methods for computing the stabilizing solution to the considered equation are investigated. Computer realizations of the presented methods are numerically compared on the computational platforms MATLAB and SCILAB.
文摘The revised new iterative method for solving the ground state of Schroedingerequation is deduced. Based on Green functions defined by quadratures along a single trajectory thisiterative method is applied to solve the ground state of the double-well potential. The result iscompared to the one based on the original iterative method. The limitation of the asymptoticexpansion is also discussed.
基金Supported by National Natural Science Foundation of China under Grant No.10847001the SRF for ROCS,SEM,and Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘To solve the wave functions and energies of the groundstate of H+2 ion an iteration procedure for N- dimensional potentials is applied. The iterative solutions are convergent nicely, which are comparable to earlier results based on variational methods.
文摘Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. Write A(D,D)={f: f is a continuous map from D into itself, and f|D ° is analytic}. Suppose G,H: D 2n+1 →C are continuous maps (n≥2), and G|(D 2n+1 ) °, H|(D 2n+1 ) ° are analytic. In this paper, we study the system of iterative functional equationsG(z,f(z),…,f n(z), g(z),…,g n(z))=0, H(z,f(z),…,f n(z), g(z),…,g n(z))=0, for any z∈D,and give some conditions for the system of equations to have a solution or a unique solution in A(D,D) ×A(D,D).
基金Supported by the Natural Science Foundation of Zhejiang Province (Y605144)the XNF of Zhejiang University of Media and Communications (XN080012008034)
文摘The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.
基金National Natural Science Foundation of China under Grant No.10172056
文摘One of the advantages of the variational iteration method is the free choice of initial guess. In this paper we use the basic idea of the Jacobian-function method to construct a generalized trial function with some unknown parameters. The Jaulent-Miodek equations are used to illustrate effectiveness and convenience of this method, some new explicit exact travelling wave solutions have been obtained, which include bell-type soliton solution, kink-type soliton solutions, solitary wave solutions, and doubly periodic wave solutions.
文摘In this paper, we consider the iterated equationλ1f(x) + λ2f2(x)=F(x)where f2(x)= f(f(x)), F (x) denotes known function and f(x) denotes the unknown function. There are given conditions for the existence, uniqueness and stability of C'-solutions ofthe iterated equation (*) and also there is a proved theorem for the continuous dependence of Cr-solutions of iterated equation (*) on the given function.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金The project is supported by the Natural Science Foundation of China.
文摘Ln this paper, the super-inverse iterative method is proposed to compute the accurate and complete eigen-solutions for anti-plane cracks/notches with multi-materials, arbitrary opening angles and various surface conditions. Taking the advantage of the knowledge of the variation forms of the eigen-functions, a series of numerical techniques are proposed to simplify the computation and speed up the convergence rare of the inverse iteration. A number of numerical examples are given to demonstrate the excellent accuracy, efficiency and reliability of the proposed approach.
文摘Various mixed formulations of the finite element method (FEM) yield matrix equations involving zero diagonal entries. They are then dealt with by a penaltymethod so that they become non-zero but near zero terms. However, the penalty has tobe chosen properly. If it is too large, the matrix equation may become ill-conditioned. Onthe other hand, the matrix equation may give incorrect answer if the penalty is too small.In non-linear regime, the difficulty is more serious because the magnitude order of the matrix varies considerably in the entire loading history. The paper suggests an iteration solution and applies it to non-linear FEM of rubber-like hyper-elasticity. This type of analysisis highly non-linear both in physics and in geometry as well as the strong constraint of incompressibility. The iteration solution is demonstrated to possess super precision and excellent convergence characteristics.
文摘In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most interesting features of the proposed methods are its extreme simplicity and concise forms of iteration formula for a wide range of nonlinear problems.
文摘In this paper, we extend variational iteration method (VIM) to find approximate solutions of linear and nonlinear thirteenth order differential equations in boundary value problems. The method is based on boundary valued problems. Two numerical examples are presented for the numerical illustration of the method and their results are compared with those considered by [1,2]. The results reveal that VIM is very effective and highly promising in comparison with other numerical methods.