In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o...In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.展开更多
In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algor...In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.展开更多
The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practi...The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practice.An improved optimal elemental method is presented that defines a new objective function,and as a byproduct,circumvents the need for mass normalized modal shapes,which are also not readily available in practice.To solve the group of nonlinear equations created by the improved optimal method,the Lagrange multiplier method and Matlab function fmincon are employed.To deal with actual complex structures, the float-encoding genetic algorithm(FGA)is introduced to enhance the capability of the improved method.Two examples,a 7- degree of freedom(DOF)mass-spring system and a 53-DOF planar frame,respectively,are updated using the improved method. The example results demonstrate the advantages of the improved method over existing optimal methods,and show that the genetic algorithm is an effective way to update the models used for actual complex structures.展开更多
Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studi...Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.展开更多
The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be ...The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.展开更多
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o...Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.展开更多
The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully disc...The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.展开更多
A parameter-free approach is proposed to determine the Lagrange multiplier for the constraint of material volume in the level set method.It is inspired by the procedure of determining the threshold of sensitivity numb...A parameter-free approach is proposed to determine the Lagrange multiplier for the constraint of material volume in the level set method.It is inspired by the procedure of determining the threshold of sensitivity number in the BESO method.It first computes the difference between the volume of current design and the upper bound of volume.Then,the Lagrange multiplier is regarded as the threshold of sensitivity number to remove the redundant material.Numerical examples proved that this approach is effective to constrain the volume.More importantly,there is no parameter in the proposed approach,which makes it convenient to use.In addition,the convergence is stable,and there is no big oscillation.展开更多
The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linear...The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linearized alternating direction multiplier method (LADMM) has received extensive attention because of its effectiveness and ease of implementation. This paper mainly discusses the application of ADMM in dictionary learning (non-convex problem). Many numerical experiments show that to achieve higher convergence accuracy, the convergence speed of ADMM is slower, especially near the optimal solution. Therefore, we introduce the linearized alternating direction multiplier method (LADMM) to accelerate the convergence speed of ADMM. Specifically, the problem is solved by linearizing the quadratic term of the subproblem, and the convergence of the algorithm is proved. Finally, there is a brief summary of the full text.展开更多
This paper introduces the Lagrangian relaxation method to solve multiobjective optimization problems. It is often required to use the appropriate technique to determine the Lagrangian multipliers in the relaxation met...This paper introduces the Lagrangian relaxation method to solve multiobjective optimization problems. It is often required to use the appropriate technique to determine the Lagrangian multipliers in the relaxation method that leads to finding the optimal solution to the problem. Our analysis aims to find a suitable technique to generate Lagrangian multipliers, and later these multipliers are used in the relaxation method to solve Multiobjective optimization problems. We propose a search-based technique to generate Lagrange multipliers. In our paper, we choose a suitable and well-known scalarization method that transforms the original multiobjective into a scalar objective optimization problem. Later, we solve this scalar objective problem using Lagrangian relaxation techniques. We use Brute force techniques to sort optimum solutions. Finally, we analyze the results, and efficient methods are recommended.展开更多
A more efficient method of locating the optimum of a second order response function was of interest in this work. In order to do this, the principles of optimal designs of experiment is invoked and used for this purpo...A more efficient method of locating the optimum of a second order response function was of interest in this work. In order to do this, the principles of optimal designs of experiment is invoked and used for this purpose. At the end, it was discovered that the noticeable pitfall in response surface methodology (RSM) was circumvented by this method as the step length was obtained by taking the derivative of the response function rather than doing so by intuition or trial and error as is the case in RSM. A numerical illustration shows that this method is suitable for obtaining the desired optimizer in just one move which compares favourably with other known methods such as Newton-Raphson method which requires more than one iteration to reach the optimizer.展开更多
The alternating direction method of multipliers(ADMM)is one of the most successful and powerful methods for separable minimization optimization.Based on the idea of symmetric ADMM in two-block optimization,we add an u...The alternating direction method of multipliers(ADMM)is one of the most successful and powerful methods for separable minimization optimization.Based on the idea of symmetric ADMM in two-block optimization,we add an updating formula for the Lagrange multiplier without restricting its position for multiblock one.Then,combining with the Bregman distance,in this work,a Bregman-style partially symmetric ADMM is presented for nonconvex multi-block optimization with linear constraints,and the Lagrange multiplier is updated twice with different relaxation factors in the iteration scheme.Under the suitable conditions,the global convergence,strong convergence and convergence rate of the presented method are analyzed and obtained.Finally,some preliminary numerical results are reported to support the correctness of the theoretical assertions,and these show that the presented method is numerically effective.展开更多
Alternating direction method of multipliers(ADMM)receives much attention in the recent years due to various demands from machine learning and big data related optimization.In 2013,Ouyang et al.extend the ADMM to the s...Alternating direction method of multipliers(ADMM)receives much attention in the recent years due to various demands from machine learning and big data related optimization.In 2013,Ouyang et al.extend the ADMM to the stochastic setting for solving some stochastic optimization problems,inspired by the structural risk minimization principle.In this paper,we consider a stochastic variant of symmetric ADMM,named symmetric stochastic linearized ADMM(SSL-ADMM).In particular,using the framework of variational inequality,we analyze the convergence properties of SSL-ADMM.Moreover,we show that,with high probability,SSL-ADMM has O((ln N)·N^(-1/2))constraint violation bound and objective error bound for convex problems,and has O((ln N)^(2)·N^(-1))constraint violation bound and objective error bound for strongly convex problems,where N is the iteration number.Symmetric ADMM can improve the algorithmic performance compared to classical ADMM,numerical experiments for statistical machine learning show that such an improvement is also present in the stochastic setting.展开更多
The secant methods discussed by Fontecilla (in 1988) are considerably revised through employing a trust region multiplier strategy and introducing a nondifferentiable merit function. In this paper the secant methods a...The secant methods discussed by Fontecilla (in 1988) are considerably revised through employing a trust region multiplier strategy and introducing a nondifferentiable merit function. In this paper the secant methods are also improved by adding a dogleg typed movement which allows to overcome a phenomena similar to the Maratos effect. Furthermore, these algorithms are analyzed and global convergence theorems as well as local superlinear convergence rate are proved.展开更多
针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化...针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。展开更多
文摘In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.
文摘In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.
基金The China Hi-Tech R&D Program(863 Program) Project Number 2001AA602023
文摘The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practice.An improved optimal elemental method is presented that defines a new objective function,and as a byproduct,circumvents the need for mass normalized modal shapes,which are also not readily available in practice.To solve the group of nonlinear equations created by the improved optimal method,the Lagrange multiplier method and Matlab function fmincon are employed.To deal with actual complex structures, the float-encoding genetic algorithm(FGA)is introduced to enhance the capability of the improved method.Two examples,a 7- degree of freedom(DOF)mass-spring system and a 53-DOF planar frame,respectively,are updated using the improved method. The example results demonstrate the advantages of the improved method over existing optimal methods,and show that the genetic algorithm is an effective way to update the models used for actual complex structures.
文摘Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.
基金Supported by the National Natural Science Foundation of China(Grant No.11971149,11871381)Natural Science Foundation of Henan Province for Youth(Grant No.202300410146)。
文摘The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.
基金support of The National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201)。
文摘Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.
基金P.Sun was supported by NSF Grant DMS-1418806C.S.Zhang was partially supported by the National Key Research and Development Program of China(Grant No.2016YFB0201304)+1 种基金the Major Research Plan of National Natural Science Foundation of China(Grant Nos.91430215,91530323)the Key Research Program of Frontier Sciences of CAS.
文摘The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.
基金This research work is supported by the National Natural Science Foundation of China(Grant No.51975227).
文摘A parameter-free approach is proposed to determine the Lagrange multiplier for the constraint of material volume in the level set method.It is inspired by the procedure of determining the threshold of sensitivity number in the BESO method.It first computes the difference between the volume of current design and the upper bound of volume.Then,the Lagrange multiplier is regarded as the threshold of sensitivity number to remove the redundant material.Numerical examples proved that this approach is effective to constrain the volume.More importantly,there is no parameter in the proposed approach,which makes it convenient to use.In addition,the convergence is stable,and there is no big oscillation.
文摘The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linearized alternating direction multiplier method (LADMM) has received extensive attention because of its effectiveness and ease of implementation. This paper mainly discusses the application of ADMM in dictionary learning (non-convex problem). Many numerical experiments show that to achieve higher convergence accuracy, the convergence speed of ADMM is slower, especially near the optimal solution. Therefore, we introduce the linearized alternating direction multiplier method (LADMM) to accelerate the convergence speed of ADMM. Specifically, the problem is solved by linearizing the quadratic term of the subproblem, and the convergence of the algorithm is proved. Finally, there is a brief summary of the full text.
文摘This paper introduces the Lagrangian relaxation method to solve multiobjective optimization problems. It is often required to use the appropriate technique to determine the Lagrangian multipliers in the relaxation method that leads to finding the optimal solution to the problem. Our analysis aims to find a suitable technique to generate Lagrangian multipliers, and later these multipliers are used in the relaxation method to solve Multiobjective optimization problems. We propose a search-based technique to generate Lagrange multipliers. In our paper, we choose a suitable and well-known scalarization method that transforms the original multiobjective into a scalar objective optimization problem. Later, we solve this scalar objective problem using Lagrangian relaxation techniques. We use Brute force techniques to sort optimum solutions. Finally, we analyze the results, and efficient methods are recommended.
文摘A more efficient method of locating the optimum of a second order response function was of interest in this work. In order to do this, the principles of optimal designs of experiment is invoked and used for this purpose. At the end, it was discovered that the noticeable pitfall in response surface methodology (RSM) was circumvented by this method as the step length was obtained by taking the derivative of the response function rather than doing so by intuition or trial and error as is the case in RSM. A numerical illustration shows that this method is suitable for obtaining the desired optimizer in just one move which compares favourably with other known methods such as Newton-Raphson method which requires more than one iteration to reach the optimizer.
基金supported by the National Natural Science Foundation of China (No.12171106)the Natural Science Foundation of Guangxi Province (No.2020GXNSFDA238017)。
文摘The alternating direction method of multipliers(ADMM)is one of the most successful and powerful methods for separable minimization optimization.Based on the idea of symmetric ADMM in two-block optimization,we add an updating formula for the Lagrange multiplier without restricting its position for multiblock one.Then,combining with the Bregman distance,in this work,a Bregman-style partially symmetric ADMM is presented for nonconvex multi-block optimization with linear constraints,and the Lagrange multiplier is updated twice with different relaxation factors in the iteration scheme.Under the suitable conditions,the global convergence,strong convergence and convergence rate of the presented method are analyzed and obtained.Finally,some preliminary numerical results are reported to support the correctness of the theoretical assertions,and these show that the presented method is numerically effective.
基金Supported by National Natural Science Foundation of China (61662036)。
文摘Alternating direction method of multipliers(ADMM)receives much attention in the recent years due to various demands from machine learning and big data related optimization.In 2013,Ouyang et al.extend the ADMM to the stochastic setting for solving some stochastic optimization problems,inspired by the structural risk minimization principle.In this paper,we consider a stochastic variant of symmetric ADMM,named symmetric stochastic linearized ADMM(SSL-ADMM).In particular,using the framework of variational inequality,we analyze the convergence properties of SSL-ADMM.Moreover,we show that,with high probability,SSL-ADMM has O((ln N)·N^(-1/2))constraint violation bound and objective error bound for convex problems,and has O((ln N)^(2)·N^(-1))constraint violation bound and objective error bound for strongly convex problems,where N is the iteration number.Symmetric ADMM can improve the algorithmic performance compared to classical ADMM,numerical experiments for statistical machine learning show that such an improvement is also present in the stochastic setting.
基金Supported by Science and Technology Foundation of Shanghai Higher Education
文摘The secant methods discussed by Fontecilla (in 1988) are considerably revised through employing a trust region multiplier strategy and introducing a nondifferentiable merit function. In this paper the secant methods are also improved by adding a dogleg typed movement which allows to overcome a phenomena similar to the Maratos effect. Furthermore, these algorithms are analyzed and global convergence theorems as well as local superlinear convergence rate are proved.
文摘针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。