This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domai...This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domain is bounded. Moreover, the ratio of the enstrophy over the energy has a limit as time tends to infinity, which is an eigenvaiue of the Stokes operator.展开更多
It is an effective way to use coal slime as fuel for circulating fluidized bed boilers, which will not only solve its pollution to the environment, but also turn waste to treasure. In order to provide basic technical ...It is an effective way to use coal slime as fuel for circulating fluidized bed boilers, which will not only solve its pollution to the environment, but also turn waste to treasure. In order to provide basic technical information for transportation of coal slime from the coal preparation plant to the boiler, this paper experimentally studied the rheological behaviors of coal slime produced by filter-pressing. By using a rotational viscometer, the influences of water content, temperature, and shear time on the rheological behaviors of coal slime were investigated. Experimental results show that the coal slime will behave like Bingham plastics with low water content and like Bingham pseudo-plastics with 37.5% water content,while like pseudo-plastics with 40% water content. This indicates that the water content of coal slime must be controlled in consideration of both transportation resistance and combustion efficiency. Study results also show that, the apparent viscosity of coal slime at 5℃ is about 1.5–1.7 times of that at 40℃ for water contents 32%–37.5%, while the influence of temperature can be neglected when the water content is 40%. With increasing of water content, the influences of shear time on the apparent viscosity of coal slime becomes less. When the water content is more than 30%, the effect of shear time is negligible. It indicates that water content has the most important influence on the rheological behaviors of coal slime. There must be an optimal water content in considering conveying resistance and combustion efficiency. The environmental temperature must also be considered in coal slime transportation.展开更多
Satisfying the mold-flux performance requirements for high-speed continuous casting necessitates the development of a new non-Newtonian-fluid mold flux with shear-thinning behavior, i.e., a mold flux whose viscosity i...Satisfying the mold-flux performance requirements for high-speed continuous casting necessitates the development of a new non-Newtonian-fluid mold flux with shear-thinning behavior, i.e., a mold flux whose viscosity is relatively high under lower shear rates and relatively low under higher shear rates. In this work, a mold flux that exhibits shear-thinning behavior was developed by adding different amounts of Si_3N_4 to the CaO–SiO_2–CaF_2 mold flux. The shear-thinning behavior was investigated using a rotational viscometer. In addition, the microstructure of the newly prepared slags was studied by high-temperature Raman spectroscopy and X-ray photoelectron spectroscopy. The results showed that the mechanism of shear-thinning was attributable to a temporary viscosity loss caused by the one-way shear stress, whereas the corresponding magnitude of shear-thinning was closely related to the degree of polymerization(DP). Finally, the non-Newtonian fluid mold flux was used for laboratory casting tests, which revealed that the mold flux could reduce slag entrapment and positively affect the continuous casting optimization.展开更多
This study presents an overview of viscoelastic characteristics of biocomposites derived of natural-fibre-reinforced thermoplastic polymers and predictive models have been presented in order to understand their rheolo...This study presents an overview of viscoelastic characteristics of biocomposites derived of natural-fibre-reinforced thermoplastic polymers and predictive models have been presented in order to understand their rheological behavior. Various constitutive equations are reviewed for a better understanding of their applicability to polymer melt in determining the viscosity. The models to be investigated are the Giesekus-Leonov model, the Upper Convected Maxwell (UCM) model, the White-Metzner model, K-BKZ model, the Oldroyd-B model, and the Phan-Thien-Tanner models. The aforementioned models are the most powerful for predicting the rheological behavior of hybrid and green viscoelastic materials in the presence of high shear rate and in all dimensions. The Phan-Thien Tanner model, the Oldroyd-B model, and the Giesekus model can be used in various modes to fit the relaxation modulus accurately and to predict the shear thinning as well as shear thickening characteristics. The Phan-Thien Tanner, K-BKZ, Upper convected Maxwell, Oldroyd-B, and Giesekus models predicted the steady shear viscosity and the transient first normal stress coefficient better than the White-Metzner model for green-fibre-reinforced thermoplastic composites.展开更多
针对时间/压力点胶系统影响因素较多、缺乏整体一致性、难于控制的缺点,提出了SPC和Run by Run的PI算法相结合的控制方法。通过对时间/压力点胶机结构特点、胶体流变特性、气压的动态特征及其影响因素进行综合分析,在胶体剪切应力和剪...针对时间/压力点胶系统影响因素较多、缺乏整体一致性、难于控制的缺点,提出了SPC和Run by Run的PI算法相结合的控制方法。通过对时间/压力点胶机结构特点、胶体流变特性、气压的动态特征及其影响因素进行综合分析,在胶体剪切应力和剪切应变的经验关系上建立了有效的流量模型。分析了一般控制方法,建立体积估计模型,运用Regression-based SPC和PI算法组合控制。实验表明,在时间/压力方式下微量点胶能取得很好的效果。展开更多
以EPDM g MAH为增容剂 ,采用熔融共混技术制备了热塑性聚氨酯弹性体 (TPU)增韧聚丙烯 (PP)材料 ,研究了PP/EPDM g MAH/TPU共混物的流变行为 ,重点讨论了增容剂EPDM g MAH对共混物流变行为的影响。结果表明 :共混物熔体的非牛顿指数n <...以EPDM g MAH为增容剂 ,采用熔融共混技术制备了热塑性聚氨酯弹性体 (TPU)增韧聚丙烯 (PP)材料 ,研究了PP/EPDM g MAH/TPU共混物的流变行为 ,重点讨论了增容剂EPDM g MAH对共混物流变行为的影响。结果表明 :共混物熔体的非牛顿指数n <1,且随EPDM g MAH用量的增加而减小 ,表观粘度随剪切速率和剪切应力的增大而降低 ,熔体符合假塑性流体的流动规律 ;温度升高 ,表观粘度降低 ;随着EPDM g MAH用量的增加 ,共混物的表观粘度升高 。展开更多
文摘This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domain is bounded. Moreover, the ratio of the enstrophy over the energy has a limit as time tends to infinity, which is an eigenvaiue of the Stokes operator.
基金the National Key Technology R&D Program for the 12th Five-Year Plan of China (No. 2014BAB01B03)the National Natural Science Foundation of China (No. 51304192)
文摘It is an effective way to use coal slime as fuel for circulating fluidized bed boilers, which will not only solve its pollution to the environment, but also turn waste to treasure. In order to provide basic technical information for transportation of coal slime from the coal preparation plant to the boiler, this paper experimentally studied the rheological behaviors of coal slime produced by filter-pressing. By using a rotational viscometer, the influences of water content, temperature, and shear time on the rheological behaviors of coal slime were investigated. Experimental results show that the coal slime will behave like Bingham plastics with low water content and like Bingham pseudo-plastics with 37.5% water content,while like pseudo-plastics with 40% water content. This indicates that the water content of coal slime must be controlled in consideration of both transportation resistance and combustion efficiency. Study results also show that, the apparent viscosity of coal slime at 5℃ is about 1.5–1.7 times of that at 40℃ for water contents 32%–37.5%, while the influence of temperature can be neglected when the water content is 40%. With increasing of water content, the influences of shear time on the apparent viscosity of coal slime becomes less. When the water content is more than 30%, the effect of shear time is negligible. It indicates that water content has the most important influence on the rheological behaviors of coal slime. There must be an optimal water content in considering conveying resistance and combustion efficiency. The environmental temperature must also be considered in coal slime transportation.
基金financially supported by the National Natural Science Foundation of China (Nos.51574109 and 51604119)
文摘Satisfying the mold-flux performance requirements for high-speed continuous casting necessitates the development of a new non-Newtonian-fluid mold flux with shear-thinning behavior, i.e., a mold flux whose viscosity is relatively high under lower shear rates and relatively low under higher shear rates. In this work, a mold flux that exhibits shear-thinning behavior was developed by adding different amounts of Si_3N_4 to the CaO–SiO_2–CaF_2 mold flux. The shear-thinning behavior was investigated using a rotational viscometer. In addition, the microstructure of the newly prepared slags was studied by high-temperature Raman spectroscopy and X-ray photoelectron spectroscopy. The results showed that the mechanism of shear-thinning was attributable to a temporary viscosity loss caused by the one-way shear stress, whereas the corresponding magnitude of shear-thinning was closely related to the degree of polymerization(DP). Finally, the non-Newtonian fluid mold flux was used for laboratory casting tests, which revealed that the mold flux could reduce slag entrapment and positively affect the continuous casting optimization.
文摘This study presents an overview of viscoelastic characteristics of biocomposites derived of natural-fibre-reinforced thermoplastic polymers and predictive models have been presented in order to understand their rheological behavior. Various constitutive equations are reviewed for a better understanding of their applicability to polymer melt in determining the viscosity. The models to be investigated are the Giesekus-Leonov model, the Upper Convected Maxwell (UCM) model, the White-Metzner model, K-BKZ model, the Oldroyd-B model, and the Phan-Thien-Tanner models. The aforementioned models are the most powerful for predicting the rheological behavior of hybrid and green viscoelastic materials in the presence of high shear rate and in all dimensions. The Phan-Thien Tanner model, the Oldroyd-B model, and the Giesekus model can be used in various modes to fit the relaxation modulus accurately and to predict the shear thinning as well as shear thickening characteristics. The Phan-Thien Tanner, K-BKZ, Upper convected Maxwell, Oldroyd-B, and Giesekus models predicted the steady shear viscosity and the transient first normal stress coefficient better than the White-Metzner model for green-fibre-reinforced thermoplastic composites.
文摘针对时间/压力点胶系统影响因素较多、缺乏整体一致性、难于控制的缺点,提出了SPC和Run by Run的PI算法相结合的控制方法。通过对时间/压力点胶机结构特点、胶体流变特性、气压的动态特征及其影响因素进行综合分析,在胶体剪切应力和剪切应变的经验关系上建立了有效的流量模型。分析了一般控制方法,建立体积估计模型,运用Regression-based SPC和PI算法组合控制。实验表明,在时间/压力方式下微量点胶能取得很好的效果。
文摘以EPDM g MAH为增容剂 ,采用熔融共混技术制备了热塑性聚氨酯弹性体 (TPU)增韧聚丙烯 (PP)材料 ,研究了PP/EPDM g MAH/TPU共混物的流变行为 ,重点讨论了增容剂EPDM g MAH对共混物流变行为的影响。结果表明 :共混物熔体的非牛顿指数n <1,且随EPDM g MAH用量的增加而减小 ,表观粘度随剪切速率和剪切应力的增大而降低 ,熔体符合假塑性流体的流动规律 ;温度升高 ,表观粘度降低 ;随着EPDM g MAH用量的增加 ,共混物的表观粘度升高 。