The semi-classical black hole tunneling radiation (Parikh-Wilczek tunneling proposal) is calculated undera minimal length uncertainty analysis.It is shown that,the generalized second law of thermodynamics may bound th...The semi-classical black hole tunneling radiation (Parikh-Wilczek tunneling proposal) is calculated undera minimal length uncertainty analysis.It is shown that,the generalized second law of thermodynamics may bound thetunneling probability radiation of a Reissner-Nordstrom black hole radiation.展开更多
A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. Th...A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incompressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classification with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.展开更多
There have emerged ample literature about the Second Law analysis of extraterrestrial and terrestrial solar radiation consequent to the pioneer works by R. Petela and D. C. Spanner, of which most are irrelevant to the...There have emerged ample literature about the Second Law analysis of extraterrestrial and terrestrial solar radiation consequent to the pioneer works by R. Petela and D. C. Spanner, of which most are irrelevant to the frequency distribution of solar radiation. Since the Second Law analysis was introduced to the fields like photovoltaic and photosynthesis, rendering a need for a method closely related to solar radiation spectrum, some authors created wavelength dependent dilute factots to take the various influence of atmosphere on the frequency distribution into consideration. Because of the complexity of the influence on different frequency, it is not convenient and accurate enough to practically apply the present exergy theories of diluted solar radiation to real solar exergy systems at the surface of the earth. This paper shows a numerical method of Second Law analysis in dealing with the cases of diluted solar irradiance on the earth, based on the observed spectra of global direct and diffuse展开更多
According to the existing concrete core samples obtained in site, chloride concentration and porosity of existing normal hydraulic concrete were measured, and chloride diffusivity in existing hydraulic concrete was st...According to the existing concrete core samples obtained in site, chloride concentration and porosity of existing normal hydraulic concrete were measured, and chloride diffusivity in existing hydraulic concrete was studied. By Fick’s second law, the chloride diffusion coefficients in the steady diffusion area were calculated. The chloride diffusion of different mix proportion concrete was tested, and chloride diffusion coefficients and porosities of freshly concrete were measured, moreover, the relationship between diffusion coefficient and porosity was analyzed. The results show that the varying law of chloride diffusion coefficient with exposure time of existing concrete can be predicted in a better way by Fick’s second law and water-cement ratios or porosity of concrete and chloride concentration in existing concrete.展开更多
In this paper, the mistakes in the traditional first law are pointed out. A new second law of thermodynamics, the law of coupling is mentioned. The Liu's Principle of Free Energy Conservation is stated. And finall...In this paper, the mistakes in the traditional first law are pointed out. A new second law of thermodynamics, the law of coupling is mentioned. The Liu's Principle of Free Energy Conservation is stated. And finally a New Discipline is expressed as A THEORETICAL FLOW SHEET.展开更多
The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum...The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model,nor greater than the reversible Carnot efficiency.展开更多
Loschmidt’s paradox is extended by replacing its assumption of time reversibility with full CPT symmetry. Mobility is identified as a means for expressing collisions or dissipation, and the cross product of its gradi...Loschmidt’s paradox is extended by replacing its assumption of time reversibility with full CPT symmetry. Mobility is identified as a means for expressing collisions or dissipation, and the cross product of its gradient with the magnetic field, for expressing parity. Three phenomena incorporating such cross products are identified. The first is the cross product of the mobility gradient with the magnetic field. The second combines this cross product with the E cross B drift. The third is the reciprocal of the Nernst effect expressed as a cross product of the temperature gradient and the magnetic field. Simulations are conducted for testing Loschmidt’s extended paradox. Onsager’s exclusion of magnetic fields and rotation from reciprocals violates CPT symmetry and is unjustified. All three cross-product phenomena skew statistics in a fashion unanticipated by Boltzmann’s assumptions in his H-Theorem. CPT symmetric systems fall outside the assumptions of the theorem which is not rendered invalid but simply limited to its domain of applicability. Therefore, these systems do not violate the second law as Boltzmann defines it. They bypass it.展开更多
A Faraday isolator is shown to develop a temperature difference between its input and output, but still complies with the second law when all the heat carriers, in this case, photons are homogeneous and indistinguisha...A Faraday isolator is shown to develop a temperature difference between its input and output, but still complies with the second law when all the heat carriers, in this case, photons are homogeneous and indistinguishable. This result is a consequence of the H-theorem which assumes homogeneity and indistinguishability of particles. However, when a thermal feedback path is added, in which heat carriers have physical properties different from the photons in the isolator, then a heterogeneous system is formed not covered by the H-theorem, and the second law is violated.展开更多
A Faraday isolator is shown to develop a temperature difference between its input and output, but still complies with the second law when all the heat carriers, in this case, photons are homogeneous and indistinguisha...A Faraday isolator is shown to develop a temperature difference between its input and output, but still complies with the second law when all the heat carriers, in this case, photons are homogeneous and indistinguishable. This result is a consequence of the H-theorem which assumes homogeneity and indistinguishability of particles. However, when a thermal feedback path is added, in which heat carriers have physical properties different from the photons in the isolator, then a heterogeneous system is formed not covered by the H-theorem, and the second law is violated.展开更多
The aim of this numerical investigation is to evaluate the laminar forced convection of biologically synthesized water-silver nanofluid through a heat sink(HS)filled with porous foam(PHS)using first and second laws of...The aim of this numerical investigation is to evaluate the laminar forced convection of biologically synthesized water-silver nanofluid through a heat sink(HS)filled with porous foam(PHS)using first and second laws of thermodynamics.The impacts of inlet velocity(V=0.5–3 m·s^-1)and volume fraction of nanofluid(φ=0–1%)on the performance metrics of HS are assessed and the outcomes are compared with those of the non-porous HS(NHS).The outcomes revealed that for both the PHS and NHS,the increase of V causes an intensification in convection coefficient,pumping power,and entropy generation due to fluid friction,while the maximum CPU temperature,thermal resistance,and entropy generation due to the heat transfer reduces by boosting V.Also,it was found that the augmentation of V results in intensification in convection coefficient,pumping power,overall hydrothermal performance,and frictional entropy generation,while the opposite is true for maximum CPU temperature,thermal resistance,and thermal entropy generation.Furthermore,it was reported that,except forφ=0.5%,the overall hydrothermal performance of NHS is better than that of PHS,while PHS has better second-law performance than NHS in all the studied cases.Also,it can be concluded that the best hydrothermal performance for PHS belongs toφ=1%and V=0.5 m·s^-1,while for NHS,these values are 1%and 2 m·s^-1.展开更多
Refrigeration coefficient, ε, is usually calculated by using the First Law of Thermodynamics. In this paper, a new derivation process is introduced through the combination of the Second Law of Thermodynamics with the...Refrigeration coefficient, ε, is usually calculated by using the First Law of Thermodynamics. In this paper, a new derivation process is introduced through the combination of the Second Law of Thermodynamics with the First Law of Thermodynamics. As a result, two new calculation equations for refrigeration coefficient are proposed. One equation is equivalent to the common method, but its form is a little complicated for real calculation. Another equation is the further simplification, and can be used to calculate the refrigeration coefficient instead of common method with a oermit error.展开更多
Based on the entropy generation concept of thermodynamics, this paper estabfished a general theoretical model for the analysis of entropy generation to optimize fins, in which the minimum entropy generation was select...Based on the entropy generation concept of thermodynamics, this paper estabfished a general theoretical model for the analysis of entropy generation to optimize fins, in which the minimum entropy generation was selected as the object to be studied. The irreversibility due to heat transfer and friction was taken into account so that the minimum entropy generation number has been analyzed with respect to second law of thermodynamics in the forced cross-flow. The optimum dimensions of cylinder pins were discussed. It's found that the minimum entropy generation number depends on parameters related to the fluid and fin physical parameters. Varlatioms of the minimum entropy generation number with different parameters were analyzed.展开更多
We propose a reformulation of Newton’s second law of motion for charged particles and possible applications of the reformulation to quantum dynamics. We show that the negative energy states arising from the Dirac equ...We propose a reformulation of Newton’s second law of motion for charged particles and possible applications of the reformulation to quantum dynamics. We show that the negative energy states arising from the Dirac equation in relativistic quantum mechanics can be verified using the reformulating framework. We also discuss possible hidden dynamics underlying the concept of quantum jumps in quantum mechanics as outlined in Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger’s article: ARE THERE QUANTUM JUMPS? In this case, we show that the hidden dynamics of quantum jumps are also determined by the Coulomb interaction between charged particles.展开更多
In all convective heat transfer situations, losses occur in the flow field (by dissipation) as well as in the temperature field (by conduction). Typically these losses are more or less quantified by the friction f...In all convective heat transfer situations, losses occur in the flow field (by dissipation) as well as in the temperature field (by conduction). Typically these losses are more or less quantified by the friction factorfwith respect to losses in the flow field, and the Nusselt number Nu for the heat transfer quality. Assessing the process of convective heat transfer as a whole, then becomes problematic because two different non-dimensional quantities, f and Nu, have to be combined somehow. From a thermodynamics point of view, there is a reasonable alternative: Since all losses become manifest in corresponding entropy generation rates, these rates are determined in the velocity as well as in the temperature field. Based on the integration of the entropy generation fields, an energy devaluation number is introduced. It basically determines how much oftbe so-called entropic potential of the energy involved in a convective heat transfer process is used within it. This approach is called SLA (second law analysis).展开更多
The space time variation laws of nitrogen content in different river sections, water periods and years in the Second Songhua River in China is described in detail. The results show that there is direct relation betwee...The space time variation laws of nitrogen content in different river sections, water periods and years in the Second Songhua River in China is described in detail. The results show that there is direct relation between the nitrogen content variation in river water and that in wastewater from cities and runoff water of both banks of the river. Nitrate and nitrite contents in water in flood period are higher than that in mid and low water periods. In flood period, nitrate content in water increases gradually with the extension of river section, ammonia content in polluted river section is higher than that in unpolluted river section. Nitrate and nitrite contents in water in the flood, mid and low water periods from 1985 to 1989 were slightly higher than that from 1980 to 1984 and from 1990 to 1994, ammonia content in water increased annually.展开更多
The second law of thermodynamics, i.e. the law stating that the entropy in isolated macroscopic system can never decrease, is tightly connected to the work of the device called perpetual motion machine of second kind....The second law of thermodynamics, i.e. the law stating that the entropy in isolated macroscopic system can never decrease, is tightly connected to the work of the device called perpetual motion machine of second kind. Often this law is also defined as the inability to construct such a device. In the current paper we give complete, independent and consistent definitions of static, stationary and changing physical field. Based on that for the first time we give summarising, correct and complete definitions of natural resource machine and perpetual motion machine of second kind as well as motion machine of second kind in the set of tardyons and luxons. We present a principal structure of a motion machine of second kind using which we show that the Clausius statement and its equivalent statements in the thermodynamics can be violated for a practically big interval-time even under equilibrium fluctuations.展开更多
The law of mass action, based on maxwellian statistics, cannot explain recent epicatalysis experiments but does when generalized to non-maxwellian statistics. Challenges to the second law are traced to statistical het...The law of mass action, based on maxwellian statistics, cannot explain recent epicatalysis experiments but does when generalized to non-maxwellian statistics. Challenges to the second law are traced to statistical heterogeneity that falls outside assumptions of homogeneity and indistinguishability made by Boltzmann, Gibbs, Tolman and Von Neumann in their H-Theorems. Epicatalysis operates outside these assumptions. Hence, H-Theorems do not apply to it and the second law is bypassed, not broken. There is no contradiction with correctly understood established physics. Other phenomena also based on heterogeneous statistics include non-maxwellian adsorption, the field-induced thermoelectric effect and the reciprocal Hall effect. Elementary particles have well known distributions such as Fermi-Dirac and Bose Einstein, but composite particles such as those involved in chemical reactions, have complex intractable statistics not necessarily maxwellian and best determined by quantum modeling methods. A step by step solution for finding the quantum thermodynamic properties of a quantum composite gas, that avoids the computational requirement of modeling a large number of composite particles includes 1) quantum molecular modeling of a few particles, 2) determining their available microstates, 3) producing their partition function, 4) generating their statistics, and 5) producing the epicatalytic parameter for the generalized law of mass action.展开更多
It has been shown that the first principle of thermodynamics follows from the conservation laws for energy and linear momentum. And the second principle of thermodynamics follows from the first principle of thermodyna...It has been shown that the first principle of thermodynamics follows from the conservation laws for energy and linear momentum. And the second principle of thermodynamics follows from the first principle of thermodynamics under realization of the integrating factor (namely, temperature) and is a conservation law. The significance of the first principle of thermodynamics consists in the fact that it specifies the thermodynamic system state, which depends on interaction between conservation laws and is non-equilibrium due to a non-commutativity of conservation laws. The realization of the second principle of thermodynamics points to a transition of the thermodynamic system state into a locally-equilibrium state. Phase transitions are examples of such transitions.展开更多
The Newcomb-Benford law, which describes the uneven distribution of the frequencies of digits in data sets, is by its nature probabilistic. Therefore, the main goal of this work was to derive formulas for the permissi...The Newcomb-Benford law, which describes the uneven distribution of the frequencies of digits in data sets, is by its nature probabilistic. Therefore, the main goal of this work was to derive formulas for the permissible deviations of the above frequencies (confidence intervals). For this, a previously developed method was used, which represents an alternative to the traditional approach. The alternative formula expressing the Newcomb-Benford law is re-derived. As shown in general form, it is numerically equivalent to the original Benford formula. The obtained formulas for confidence intervals for Benford’s law are shown to be useful for checking arrays of numerical data. Consequences for numeral systems with different bases are analyzed. The alternative expression for the frequencies of digits at the second decimal place is deduced together with the corresponding deviation intervals. In general, in this approach, all the presented results are a consequence of the positionality property of digital systems such as decimal, binary, etc.展开更多
Elliptical motions of orbital bodies are treated here using Fourier series, Fortescue sequence components and Clarke’s instantaneous space vectors, quantities largely employed on electrical power systems analyses. Us...Elliptical motions of orbital bodies are treated here using Fourier series, Fortescue sequence components and Clarke’s instantaneous space vectors, quantities largely employed on electrical power systems analyses. Using this methodology, which evidences the analogy between orbital systems and autonomous second-order electrical systems, a new theory is presented in this article, in which it is demonstrated that Newton’s gravitational fields can also be treated as a composition of Hook’s elastic type fields, using the superposition principle. In fact, there is an identity between the equations of both laws. Furthermore, an energy analysis is conducted, and new concepts of power are introduced, which can help a better understanding of the physical mechanism of these quantities on both mechanical and electrical systems. The author believes that, as a practical consequence, elastic type gravitational fields can be artificially produced with modern engineering technologies, leading to possible satellites navigation techniques, with less dependency of external sources of energy and, even, new forms of energy sources for general purposes. This reinterpretation of orbital mechanics may also be complementary to conventional study, with implications for other theories such as relativistic, quantum, string theory and others.展开更多
文摘The semi-classical black hole tunneling radiation (Parikh-Wilczek tunneling proposal) is calculated undera minimal length uncertainty analysis.It is shown that,the generalized second law of thermodynamics may bound thetunneling probability radiation of a Reissner-Nordstrom black hole radiation.
文摘A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incompressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classification with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.
文摘There have emerged ample literature about the Second Law analysis of extraterrestrial and terrestrial solar radiation consequent to the pioneer works by R. Petela and D. C. Spanner, of which most are irrelevant to the frequency distribution of solar radiation. Since the Second Law analysis was introduced to the fields like photovoltaic and photosynthesis, rendering a need for a method closely related to solar radiation spectrum, some authors created wavelength dependent dilute factots to take the various influence of atmosphere on the frequency distribution into consideration. Because of the complexity of the influence on different frequency, it is not convenient and accurate enough to practically apply the present exergy theories of diluted solar radiation to real solar exergy systems at the surface of the earth. This paper shows a numerical method of Second Law analysis in dealing with the cases of diluted solar irradiance on the earth, based on the observed spectra of global direct and diffuse
基金Funded by the National Natural Science Foundation of China (No.50879079)Science and Technology Plan Project of Zhejiang Province (No.2007C23058)
文摘According to the existing concrete core samples obtained in site, chloride concentration and porosity of existing normal hydraulic concrete were measured, and chloride diffusivity in existing hydraulic concrete was studied. By Fick’s second law, the chloride diffusion coefficients in the steady diffusion area were calculated. The chloride diffusion of different mix proportion concrete was tested, and chloride diffusion coefficients and porosities of freshly concrete were measured, moreover, the relationship between diffusion coefficient and porosity was analyzed. The results show that the varying law of chloride diffusion coefficient with exposure time of existing concrete can be predicted in a better way by Fick’s second law and water-cement ratios or porosity of concrete and chloride concentration in existing concrete.
文摘In this paper, the mistakes in the traditional first law are pointed out. A new second law of thermodynamics, the law of coupling is mentioned. The Liu's Principle of Free Energy Conservation is stated. And finally a New Discipline is expressed as A THEORETICAL FLOW SHEET.
基金The project supported by National Natural Science Foundation of China under Grant No. 10404039
文摘The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model,nor greater than the reversible Carnot efficiency.
文摘Loschmidt’s paradox is extended by replacing its assumption of time reversibility with full CPT symmetry. Mobility is identified as a means for expressing collisions or dissipation, and the cross product of its gradient with the magnetic field, for expressing parity. Three phenomena incorporating such cross products are identified. The first is the cross product of the mobility gradient with the magnetic field. The second combines this cross product with the E cross B drift. The third is the reciprocal of the Nernst effect expressed as a cross product of the temperature gradient and the magnetic field. Simulations are conducted for testing Loschmidt’s extended paradox. Onsager’s exclusion of magnetic fields and rotation from reciprocals violates CPT symmetry and is unjustified. All three cross-product phenomena skew statistics in a fashion unanticipated by Boltzmann’s assumptions in his H-Theorem. CPT symmetric systems fall outside the assumptions of the theorem which is not rendered invalid but simply limited to its domain of applicability. Therefore, these systems do not violate the second law as Boltzmann defines it. They bypass it.
文摘A Faraday isolator is shown to develop a temperature difference between its input and output, but still complies with the second law when all the heat carriers, in this case, photons are homogeneous and indistinguishable. This result is a consequence of the H-theorem which assumes homogeneity and indistinguishability of particles. However, when a thermal feedback path is added, in which heat carriers have physical properties different from the photons in the isolator, then a heterogeneous system is formed not covered by the H-theorem, and the second law is violated.
文摘A Faraday isolator is shown to develop a temperature difference between its input and output, but still complies with the second law when all the heat carriers, in this case, photons are homogeneous and indistinguishable. This result is a consequence of the H-theorem which assumes homogeneity and indistinguishability of particles. However, when a thermal feedback path is added, in which heat carriers have physical properties different from the photons in the isolator, then a heterogeneous system is formed not covered by the H-theorem, and the second law is violated.
文摘The aim of this numerical investigation is to evaluate the laminar forced convection of biologically synthesized water-silver nanofluid through a heat sink(HS)filled with porous foam(PHS)using first and second laws of thermodynamics.The impacts of inlet velocity(V=0.5–3 m·s^-1)and volume fraction of nanofluid(φ=0–1%)on the performance metrics of HS are assessed and the outcomes are compared with those of the non-porous HS(NHS).The outcomes revealed that for both the PHS and NHS,the increase of V causes an intensification in convection coefficient,pumping power,and entropy generation due to fluid friction,while the maximum CPU temperature,thermal resistance,and entropy generation due to the heat transfer reduces by boosting V.Also,it was found that the augmentation of V results in intensification in convection coefficient,pumping power,overall hydrothermal performance,and frictional entropy generation,while the opposite is true for maximum CPU temperature,thermal resistance,and thermal entropy generation.Furthermore,it was reported that,except forφ=0.5%,the overall hydrothermal performance of NHS is better than that of PHS,while PHS has better second-law performance than NHS in all the studied cases.Also,it can be concluded that the best hydrothermal performance for PHS belongs toφ=1%and V=0.5 m·s^-1,while for NHS,these values are 1%and 2 m·s^-1.
基金Supported by Shanghai Leading Academic Displine Project(No.B604)
文摘Refrigeration coefficient, ε, is usually calculated by using the First Law of Thermodynamics. In this paper, a new derivation process is introduced through the combination of the Second Law of Thermodynamics with the First Law of Thermodynamics. As a result, two new calculation equations for refrigeration coefficient are proposed. One equation is equivalent to the common method, but its form is a little complicated for real calculation. Another equation is the further simplification, and can be used to calculate the refrigeration coefficient instead of common method with a oermit error.
文摘Based on the entropy generation concept of thermodynamics, this paper estabfished a general theoretical model for the analysis of entropy generation to optimize fins, in which the minimum entropy generation was selected as the object to be studied. The irreversibility due to heat transfer and friction was taken into account so that the minimum entropy generation number has been analyzed with respect to second law of thermodynamics in the forced cross-flow. The optimum dimensions of cylinder pins were discussed. It's found that the minimum entropy generation number depends on parameters related to the fluid and fin physical parameters. Varlatioms of the minimum entropy generation number with different parameters were analyzed.
文摘We propose a reformulation of Newton’s second law of motion for charged particles and possible applications of the reformulation to quantum dynamics. We show that the negative energy states arising from the Dirac equation in relativistic quantum mechanics can be verified using the reformulating framework. We also discuss possible hidden dynamics underlying the concept of quantum jumps in quantum mechanics as outlined in Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger’s article: ARE THERE QUANTUM JUMPS? In this case, we show that the hidden dynamics of quantum jumps are also determined by the Coulomb interaction between charged particles.
文摘In all convective heat transfer situations, losses occur in the flow field (by dissipation) as well as in the temperature field (by conduction). Typically these losses are more or less quantified by the friction factorfwith respect to losses in the flow field, and the Nusselt number Nu for the heat transfer quality. Assessing the process of convective heat transfer as a whole, then becomes problematic because two different non-dimensional quantities, f and Nu, have to be combined somehow. From a thermodynamics point of view, there is a reasonable alternative: Since all losses become manifest in corresponding entropy generation rates, these rates are determined in the velocity as well as in the temperature field. Based on the integration of the entropy generation fields, an energy devaluation number is introduced. It basically determines how much oftbe so-called entropic potential of the energy involved in a convective heat transfer process is used within it. This approach is called SLA (second law analysis).
文摘The space time variation laws of nitrogen content in different river sections, water periods and years in the Second Songhua River in China is described in detail. The results show that there is direct relation between the nitrogen content variation in river water and that in wastewater from cities and runoff water of both banks of the river. Nitrate and nitrite contents in water in flood period are higher than that in mid and low water periods. In flood period, nitrate content in water increases gradually with the extension of river section, ammonia content in polluted river section is higher than that in unpolluted river section. Nitrate and nitrite contents in water in the flood, mid and low water periods from 1985 to 1989 were slightly higher than that from 1980 to 1984 and from 1990 to 1994, ammonia content in water increased annually.
文摘The second law of thermodynamics, i.e. the law stating that the entropy in isolated macroscopic system can never decrease, is tightly connected to the work of the device called perpetual motion machine of second kind. Often this law is also defined as the inability to construct such a device. In the current paper we give complete, independent and consistent definitions of static, stationary and changing physical field. Based on that for the first time we give summarising, correct and complete definitions of natural resource machine and perpetual motion machine of second kind as well as motion machine of second kind in the set of tardyons and luxons. We present a principal structure of a motion machine of second kind using which we show that the Clausius statement and its equivalent statements in the thermodynamics can be violated for a practically big interval-time even under equilibrium fluctuations.
文摘The law of mass action, based on maxwellian statistics, cannot explain recent epicatalysis experiments but does when generalized to non-maxwellian statistics. Challenges to the second law are traced to statistical heterogeneity that falls outside assumptions of homogeneity and indistinguishability made by Boltzmann, Gibbs, Tolman and Von Neumann in their H-Theorems. Epicatalysis operates outside these assumptions. Hence, H-Theorems do not apply to it and the second law is bypassed, not broken. There is no contradiction with correctly understood established physics. Other phenomena also based on heterogeneous statistics include non-maxwellian adsorption, the field-induced thermoelectric effect and the reciprocal Hall effect. Elementary particles have well known distributions such as Fermi-Dirac and Bose Einstein, but composite particles such as those involved in chemical reactions, have complex intractable statistics not necessarily maxwellian and best determined by quantum modeling methods. A step by step solution for finding the quantum thermodynamic properties of a quantum composite gas, that avoids the computational requirement of modeling a large number of composite particles includes 1) quantum molecular modeling of a few particles, 2) determining their available microstates, 3) producing their partition function, 4) generating their statistics, and 5) producing the epicatalytic parameter for the generalized law of mass action.
文摘It has been shown that the first principle of thermodynamics follows from the conservation laws for energy and linear momentum. And the second principle of thermodynamics follows from the first principle of thermodynamics under realization of the integrating factor (namely, temperature) and is a conservation law. The significance of the first principle of thermodynamics consists in the fact that it specifies the thermodynamic system state, which depends on interaction between conservation laws and is non-equilibrium due to a non-commutativity of conservation laws. The realization of the second principle of thermodynamics points to a transition of the thermodynamic system state into a locally-equilibrium state. Phase transitions are examples of such transitions.
文摘The Newcomb-Benford law, which describes the uneven distribution of the frequencies of digits in data sets, is by its nature probabilistic. Therefore, the main goal of this work was to derive formulas for the permissible deviations of the above frequencies (confidence intervals). For this, a previously developed method was used, which represents an alternative to the traditional approach. The alternative formula expressing the Newcomb-Benford law is re-derived. As shown in general form, it is numerically equivalent to the original Benford formula. The obtained formulas for confidence intervals for Benford’s law are shown to be useful for checking arrays of numerical data. Consequences for numeral systems with different bases are analyzed. The alternative expression for the frequencies of digits at the second decimal place is deduced together with the corresponding deviation intervals. In general, in this approach, all the presented results are a consequence of the positionality property of digital systems such as decimal, binary, etc.
文摘Elliptical motions of orbital bodies are treated here using Fourier series, Fortescue sequence components and Clarke’s instantaneous space vectors, quantities largely employed on electrical power systems analyses. Using this methodology, which evidences the analogy between orbital systems and autonomous second-order electrical systems, a new theory is presented in this article, in which it is demonstrated that Newton’s gravitational fields can also be treated as a composition of Hook’s elastic type fields, using the superposition principle. In fact, there is an identity between the equations of both laws. Furthermore, an energy analysis is conducted, and new concepts of power are introduced, which can help a better understanding of the physical mechanism of these quantities on both mechanical and electrical systems. The author believes that, as a practical consequence, elastic type gravitational fields can be artificially produced with modern engineering technologies, leading to possible satellites navigation techniques, with less dependency of external sources of energy and, even, new forms of energy sources for general purposes. This reinterpretation of orbital mechanics may also be complementary to conventional study, with implications for other theories such as relativistic, quantum, string theory and others.