In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming ...In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming has become one of the hottest topics in the scientific community and is closely connected to the future development of human society.We analyzed the monthly varying global mean surface temperature(GMST)in 2023 and found that the globe,the land,and the oceans in 2023 all exhibit extraordinary warming,which is distinct from any previous year in recorded history.Based on the GMST statistical ensemble prediction model developed at the Institute of Atmospheric Physics,the GMST in 2023 is predicted to be 1.41℃±0.07℃,which will certainly surpass that in 2016 as the warmest year since 1850,and is approaching the 1.5℃ global warming threshold.Compared to 2022,the GMST in 2023 will increase by 0.24℃,with 88%of the increment contributed by the annual variability as mostly affected by El Niño.Moreover,the multidecadal variability related to the Atlantic Multidecadal Oscillation(AMO)in 2023 also provided an important warming background for sparking the GMST rise.As a result,the GMST in 2023 is projected to be 1.15℃±0.07℃,with only a 0.02℃ increment,if the effects of natural variability—including El Niño and the AMO—are eliminated and only the global warming trend is considered.展开更多
For laser cladding a large temperature gradient easily weakened the surface quality by generating cracks and irregular coating surfaces,which in turn affected the bearing capacity and corrosion resistance of coatings ...For laser cladding a large temperature gradient easily weakened the surface quality by generating cracks and irregular coating surfaces,which in turn affected the bearing capacity and corrosion resistance of coatings in the rapid heating and cooling process.The response surface methodology(RSM)was used to predict coating cracks by changing the powder ratio,energy density,and preheating temperature,which obtained the relevant mathematical model.After that,the sensitivity of the crack length to process parameters was analyzed based on the sensitivity analysis method.The effect of Ni60/WC composite powder process parameters on the surface quality was revealed in laser cladding.The crack length first decreased and then increased,and the Smooth decreased with the increased powder ratio.The crack length and Smooth increased with the increased energy density.The crack length decreased and Smooth increased with the increased preheating temperature.Sensitivity analysis showed that the crack length and Smooth were the most sensitive to the powder ratio.Therefore,the process parameters were reasonably selected to control the surface quality.The mathematical model and sensitivity analysis method in the work could improve the surface quality,which provided a theoretical basis for the prediction and control of laser cladding cracks.展开更多
Oxide-supported transition metal systems have been the subject of enormous interest due to the improvement of catalytic properties relative to the separate metal.Thus in this paper,we embark on a systematic study for ...Oxide-supported transition metal systems have been the subject of enormous interest due to the improvement of catalytic properties relative to the separate metal.Thus in this paper,we embark on a systematic study for Pd n (n=1-5) clusters adsorbed on TiO2 (110) surface based on DFT-GGA calculations utilizing periodic supercell models.A single Pd adatom on the defect-free surface prefers to adsorb at a hollow site bridging a protruded oxygen and a five-fold titanium atom along the [110] direction,while Pd dimer is located on the channels with the Pd-Pd bond parallel to the surface.According to the transition states (TSs) search,the adsorbed Pd trimer tends to triangular growth mode,rather than linear mode,while the Pd4 and Pd5 clusters prefer three-dimensional (3D) models.However,the oxygen vacancy has almost no influence on the promotion of Pd n cluster nucleation.Additionally,of particular significance is that the Pd-TiO2 interaction is the main driving force at the beginning of Pd nucleation,whereas the Pd-Pd interaction gets down to control the growth process of Pd cluster as the cluster gets larger.It is hoped that our theoretical study would shed light on further designing high-performance TiO2 supported Pd-based catalysts.展开更多
First-principles calculations based on density functional theory corrected by Hubbard parameter U (DFT+U) are applied to the study on the co-adsorption of O2 and H2O molecules to a-U(110) surface. The calculation...First-principles calculations based on density functional theory corrected by Hubbard parameter U (DFT+U) are applied to the study on the co-adsorption of O2 and H2O molecules to a-U(110) surface. The calculation results show that DFT+U method with Ueff = 1.5 eV can yield the experimental results of lattice constant and elastic modulus of a-uranium bulk well. Of all 7 low index surfaces of a-uranium, the (001) surface is the most stable with lowest surface energy while the (110) surface possesses the strongest activity with the highest surface energy. The adsorptions of O2 and H2O molecules are investigated separated. The O2 dissociates spontaneously in all initial configurations. For the adsorption of H2O molecule, both molecular and dissociative adsorptionsoccur. Through calculations of co-adsorption, it can be confirmed that the inhibition effect of O2 on the corrosion of uranium by water vapor originates from the preferential adsorption mechanism, while the consumption of H atoms by O atoms exerted little influence on the corrosion of uranium.展开更多
The reduced SnO2(110) surface has been investigated by using first-principles method with a slab model. By examining the vacancy formation energy of three kinds of reduced SnO2(110) surfaces, the most energeticall...The reduced SnO2(110) surface has been investigated by using first-principles method with a slab model. By examining the vacancy formation energy of three kinds of reduced SnO2(110) surfaces, the most energetically favorable defect surface is confirmed to be the surface with the coexistence of bridging and in-plane oxygen vacancies, which is different with the traditional model by only removing bridging oxygen. The results of band structure calculations indicate that the electronic structure of this defect surface is similar to the SnO surface.展开更多
The preparation, characterization and properties of titania overlayer on Fe(110) substrate is hereby reported. The TiO_X overlayer was found to form in a layer-by-layer mode with a suboxide of titanium in the form of ...The preparation, characterization and properties of titania overlayer on Fe(110) substrate is hereby reported. The TiO_X overlayer was found to form in a layer-by-layer mode with a suboxide of titanium in the form of TiO migrating into the Fe substrate and Fe migrating into the deposited layer of TiO_X simultaneously during the deposition.展开更多
The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were ...The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were calculated by use of ab initio cluster method. We carried out optimization of the geometry, calculation of the chemisorption energy and analysis of the Mulliken population to those adsorption models. According to the calculation results, it can be got that the adsorbed decomposition of NO on defect surface is more advantageous and M6 and M12 are the important models to NO chemisorption and decomposition on TiO2 surface.展开更多
Surface preparation is potentially important to the corrosion and biomedical properties of NiTi shape memory alloys. The effect of surface preparation on corrosion properties and nickel release of a Ti-56 wt.%Ni alloy...Surface preparation is potentially important to the corrosion and biomedical properties of NiTi shape memory alloys. The effect of surface preparation on corrosion properties and nickel release of a Ti-56 wt.%Ni alloy has been studied. Surface of the NiTi coupons were prepared by four methods, namely, chemical etching, electropolishing, mechanical polishing and oxidizing, and then examined by corrosion test system. Furthermore, the Ni ion releases from NiTi samples with different surface preparations dipped in 1% HCl solution were analysed. Compared with the surface after chemical treatment, mechanical polishing and thermal oxidation, electropolished surface has better corrosion resistance and less nickel release for not only its lower surface roughness, but also the composition and property of its surface film.展开更多
The Cr doped into TiO2(110) surface has been studied systematically by using periodic DFT/B3LYP method with slab model. It is found that doping Cr into perfect TiO2 (110) surface can reduce the value of band-gap from ...The Cr doped into TiO2(110) surface has been studied systematically by using periodic DFT/B3LYP method with slab model. It is found that doping Cr into perfect TiO2 (110) surface can reduce the value of band-gap from 3.13 to 1.16 eV, and then photocatalysis reaction may be achieved in visual light area. The results are in good agreement with the experiments.展开更多
The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as...The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.展开更多
基金supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.ZDBS-LY-DQC010)the National Natural Science Foundation of China(Grant No.42175045).
文摘In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming has become one of the hottest topics in the scientific community and is closely connected to the future development of human society.We analyzed the monthly varying global mean surface temperature(GMST)in 2023 and found that the globe,the land,and the oceans in 2023 all exhibit extraordinary warming,which is distinct from any previous year in recorded history.Based on the GMST statistical ensemble prediction model developed at the Institute of Atmospheric Physics,the GMST in 2023 is predicted to be 1.41℃±0.07℃,which will certainly surpass that in 2016 as the warmest year since 1850,and is approaching the 1.5℃ global warming threshold.Compared to 2022,the GMST in 2023 will increase by 0.24℃,with 88%of the increment contributed by the annual variability as mostly affected by El Niño.Moreover,the multidecadal variability related to the Atlantic Multidecadal Oscillation(AMO)in 2023 also provided an important warming background for sparking the GMST rise.As a result,the GMST in 2023 is projected to be 1.15℃±0.07℃,with only a 0.02℃ increment,if the effects of natural variability—including El Niño and the AMO—are eliminated and only the global warming trend is considered.
基金supported by Science and Technology Major Project of Fujian Province(Grant No.2020HZ03018).
文摘For laser cladding a large temperature gradient easily weakened the surface quality by generating cracks and irregular coating surfaces,which in turn affected the bearing capacity and corrosion resistance of coatings in the rapid heating and cooling process.The response surface methodology(RSM)was used to predict coating cracks by changing the powder ratio,energy density,and preheating temperature,which obtained the relevant mathematical model.After that,the sensitivity of the crack length to process parameters was analyzed based on the sensitivity analysis method.The effect of Ni60/WC composite powder process parameters on the surface quality was revealed in laser cladding.The crack length first decreased and then increased,and the Smooth decreased with the increased powder ratio.The crack length and Smooth increased with the increased energy density.The crack length decreased and Smooth increased with the increased preheating temperature.Sensitivity analysis showed that the crack length and Smooth were the most sensitive to the powder ratio.Therefore,the process parameters were reasonably selected to control the surface quality.The mathematical model and sensitivity analysis method in the work could improve the surface quality,which provided a theoretical basis for the prediction and control of laser cladding cracks.
基金supported by the National Natural Science Foundation of China (90922022)the Foundation of State Key Laboratory of Coal Combustion of Huazhong University of Science and Technology (FSKLCC1110)the Natural Science Foundation of Fujian Province,China (2012J01032,2012J01041)
文摘Oxide-supported transition metal systems have been the subject of enormous interest due to the improvement of catalytic properties relative to the separate metal.Thus in this paper,we embark on a systematic study for Pd n (n=1-5) clusters adsorbed on TiO2 (110) surface based on DFT-GGA calculations utilizing periodic supercell models.A single Pd adatom on the defect-free surface prefers to adsorb at a hollow site bridging a protruded oxygen and a five-fold titanium atom along the [110] direction,while Pd dimer is located on the channels with the Pd-Pd bond parallel to the surface.According to the transition states (TSs) search,the adsorbed Pd trimer tends to triangular growth mode,rather than linear mode,while the Pd4 and Pd5 clusters prefer three-dimensional (3D) models.However,the oxygen vacancy has almost no influence on the promotion of Pd n cluster nucleation.Additionally,of particular significance is that the Pd-TiO2 interaction is the main driving force at the beginning of Pd nucleation,whereas the Pd-Pd interaction gets down to control the growth process of Pd cluster as the cluster gets larger.It is hoped that our theoretical study would shed light on further designing high-performance TiO2 supported Pd-based catalysts.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.51401237,11474358,and 51271198)
文摘First-principles calculations based on density functional theory corrected by Hubbard parameter U (DFT+U) are applied to the study on the co-adsorption of O2 and H2O molecules to a-U(110) surface. The calculation results show that DFT+U method with Ueff = 1.5 eV can yield the experimental results of lattice constant and elastic modulus of a-uranium bulk well. Of all 7 low index surfaces of a-uranium, the (001) surface is the most stable with lowest surface energy while the (110) surface possesses the strongest activity with the highest surface energy. The adsorptions of O2 and H2O molecules are investigated separated. The O2 dissociates spontaneously in all initial configurations. For the adsorption of H2O molecule, both molecular and dissociative adsorptionsoccur. Through calculations of co-adsorption, it can be confirmed that the inhibition effect of O2 on the corrosion of uranium by water vapor originates from the preferential adsorption mechanism, while the consumption of H atoms by O atoms exerted little influence on the corrosion of uranium.
基金The project was supported by the National Natural Science Foundation of China (20673019)the Specialized Research Fund for the Doctoral Program of Higher Education (20060386001)Fujian Provincial Government (Z0513005, 2005HZ01-2-6)
文摘The reduced SnO2(110) surface has been investigated by using first-principles method with a slab model. By examining the vacancy formation energy of three kinds of reduced SnO2(110) surfaces, the most energetically favorable defect surface is confirmed to be the surface with the coexistence of bridging and in-plane oxygen vacancies, which is different with the traditional model by only removing bridging oxygen. The results of band structure calculations indicate that the electronic structure of this defect surface is similar to the SnO surface.
文摘The preparation, characterization and properties of titania overlayer on Fe(110) substrate is hereby reported. The TiO_X overlayer was found to form in a layer-by-layer mode with a suboxide of titanium in the form of TiO migrating into the Fe substrate and Fe migrating into the deposited layer of TiO_X simultaneously during the deposition.
文摘The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were calculated by use of ab initio cluster method. We carried out optimization of the geometry, calculation of the chemisorption energy and analysis of the Mulliken population to those adsorption models. According to the calculation results, it can be got that the adsorbed decomposition of NO on defect surface is more advantageous and M6 and M12 are the important models to NO chemisorption and decomposition on TiO2 surface.
文摘Surface preparation is potentially important to the corrosion and biomedical properties of NiTi shape memory alloys. The effect of surface preparation on corrosion properties and nickel release of a Ti-56 wt.%Ni alloy has been studied. Surface of the NiTi coupons were prepared by four methods, namely, chemical etching, electropolishing, mechanical polishing and oxidizing, and then examined by corrosion test system. Furthermore, the Ni ion releases from NiTi samples with different surface preparations dipped in 1% HCl solution were analysed. Compared with the surface after chemical treatment, mechanical polishing and thermal oxidation, electropolished surface has better corrosion resistance and less nickel release for not only its lower surface roughness, but also the composition and property of its surface film.
基金This work was supported by the State Key Laboratory of Structural Chemistry, the National Natural Science Foundation of China (20273013), and the Education Foundation of Fujian Province (JA03007)
文摘The Cr doped into TiO2(110) surface has been studied systematically by using periodic DFT/B3LYP method with slab model. It is found that doping Cr into perfect TiO2 (110) surface can reduce the value of band-gap from 3.13 to 1.16 eV, and then photocatalysis reaction may be achieved in visual light area. The results are in good agreement with the experiments.
基金Funded by"Xi-Bu-Zhi-Guang" Foundation of Chinese Academy of Sciences(No.XBZG-2007-5)Gansu Natural Science Foundation of China(No.0806RJYA004)Outstanding Youngth of Lanzhou University of Technology (No.Q200910)
文摘The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.