A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)...A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results indicate that the metallic nickel and iron gradually assemble and grow into larger spherical particles with increasing temperature and prolonging time. After reduction, the nickel laterite ore obviously changes into two parts of Fe-Ni metallic particles and slag matrix. An obvious relationship is found between the reduction of iron magnesium olivine and its crystal chemical properties. The nickel and iron oxides are reduced to metallic by reductant, and the lattice of olivine is destroyed. The entire reduction process is comprised of oxide reduction and metallic phase growth.展开更多
Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as subs...Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as substitutional solution phases,of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial.The intermetallic compound,BiNi,was modeled using three sublattices(Bi)(Ni,Va)(Ni,Va) considering its crystal structure(NiAs-type) and the compatibility of thermodynamic database in the multi-component systems,while Bi3Ni was treated as a stoichiometric compound.Finally,a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in this binary system were obtained.The calculated results are in reasonable agreement with the reported experimental data.展开更多
The Ti-Ni-O ternary system was assessed by means of Calphad method using ternary experimental data in previous study.Isothermal sections at 1 173 and 1 273 K were calculated.The result shows that the present calculate...The Ti-Ni-O ternary system was assessed by means of Calphad method using ternary experimental data in previous study.Isothermal sections at 1 173 and 1 273 K were calculated.The result shows that the present calculated results are in good agreement with most of the experimental results.The consistent model parameter set determined in this work may provide theoretical guidance for the deoxidation of TiNi alloy.展开更多
The effects of Fe content on the microstructure,phase constituents and microhardness of the as-cast,800℃or 1000℃-annealed Al_(7)Cr_(20)Fe_(x)Ni_(73)−x(x=13−66)alloys were investigated.Not all these alloys are compos...The effects of Fe content on the microstructure,phase constituents and microhardness of the as-cast,800℃or 1000℃-annealed Al_(7)Cr_(20)Fe_(x)Ni_(73)−x(x=13−66)alloys were investigated.Not all these alloys are composed of the single FCC phase.The BCC and B2 phases are found.It is confirmed that the BCC phase in the Al7Cr20Fe66Ni7 alloy is transformed from the FCC phase at about 900℃ during cooling.While in the 800℃-annealed Al7Cr20Fe60Ni13 alloy,the FCC phase is stable and the hardness decreases.After annealing at 1000℃,for the precipitation of the B2 particles,the Al content in the FCC phase decreases,which results in decreasing of the alloy hardness.Moreover,after annealing at 800℃,a small amount of Al-rich B2 particles precipitate at the phase boundary and some nanocrystal BCC phase precipitates in the FCC matrix,which increases the hardness of the Al_(7)Cr_(20)Fe_(x)Ni_(73)−x(x=41−49)alloys.These results will help to the composition design and processing design of the Al−Cr−Fe−Ni based high-entropy alloys.展开更多
Phase relations of the Ti-Ni-Sn ternary system were investigated via alloy sampling assisted with X-ray diffractometry(XRD)and electron probe micro-analysis(EPMA).A new binary phase with composition of TiSn4(molar fra...Phase relations of the Ti-Ni-Sn ternary system were investigated via alloy sampling assisted with X-ray diffractometry(XRD)and electron probe micro-analysis(EPMA).A new binary phase with composition of TiSn4(molar fraction,%)was detected at 508 K.In addition,a supplementary phase(Ti1-x-yNixSny)Ni3(τ,AuCu3-type)was observed at 873 and 973 K.According to the characterised microscopic structure in various annealed alloys,four ternary phases were detected in Ti-Ni-Sn ternary system:TiNiSn,TiNi2Sn,Ti2Ni2Sn and(Ti1-x-yNixSny)Ni3.Additionally,isothermal sections of Ti-Ni-Sn ternary system at 508,873 and 973 K were constructed.By comparing three isothermal sections,a peri-eutectic reaction,L+TiNi2Sn→Ni3Sn4+TiNiSn,was deduced,which occurs at a temperature between 873 and 973 K.Furthermore,the solubility of Sn in TiNi and Ni in Ti5Sn3 was detected.展开更多
The morphology evolution and phase transformation of Al9(Mn,Ni)2 eutectic phase in an Al-4Ni-2Mn alloy during heat treatment at 600°C were studied by scanning electron microscopy(SEM)and transmission electron mic...The morphology evolution and phase transformation of Al9(Mn,Ni)2 eutectic phase in an Al-4Ni-2Mn alloy during heat treatment at 600°C were studied by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Results show that nearly all of the eutectic fibers change into prolate ellipsoid and spherical particles in the process of heat treatment,and Ostwald ripening phenomenon occurs in the eutectic region with the increase of the heat treatment time.Besides,a phase transformation from Al9(Mn,Ni)2 to O-phase is confirmed.The morphologies of the transformed particles indicate that the O-phase preferentially nucleates on the specific crystal plane of the Al9(Mn,Ni)2 eutectic phase and grows in a certain direction.During the phase transformation,the(010)[001]slip system in O-phase is activated,and the resultant slip traces appear on the surface of some O-phase particles.展开更多
On the basis of the experimental data of phase equilibria and thermochemical properties available from literatures, a critical assessment for the Ni?Yb binary system was carried out using the CALPHAD (calculation of p...On the basis of the experimental data of phase equilibria and thermochemical properties available from literatures, a critical assessment for the Ni?Yb binary system was carried out using the CALPHAD (calculation of phase diagrams) method. The liquid phase is modeled as the associate model with the constituent species Ni, Yb and YbNi3, owing to the sharp change of the enthalpy of mixing of liquid phase at the composition of around 25% Yb (mole fraction). The terminal solid solutions FCC_A1 (Ni/Yb) and BCC_A2 (Yb) are described by the substitutional solution model with the Redlich?Kister polynomial. The intermetallic compounds, Yb2Ni17, YbNi5, YbNi3, YbNi2, α-YbNi and β-YbNi, are treated as strict stoichiometric compounds, since there are no noticeable homogeneity ranges reported for these compounds. A set of self-consistent thermodynamic parameters for the Ni?Yb binary system are obtained. According to the presently assessed results, the thermochemical properties and the phase boundary data can be well reproduced.展开更多
Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (137...Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (1373 K, 1473 K, and 1573 K) for 2 h. The results show that more Sn substitution reduces the content of γ-phase and a partial phase of martensite can be obtained in Co38Ni34Al28-xSnx (x=1, 2, 3) alloys after treatment at 1573 K for 2 h. The maximum martensite phase appears when 2% Al is substituted by Sn. The reverse martensitic transformation temperature of Co38Ni34Al28-xSnx alloys increases at x=1 and 2, then decreases as x=3. As the content of Sn and the temperature increase, the microhardness will increase.展开更多
Phase equilibria in Ti?Ni?Pt ternary system have been experimentally determined through diffusion triple technique combined with alloy samples approach.Assisted with electron probe microanalysis(EPMA)and X-ray diffrac...Phase equilibria in Ti?Ni?Pt ternary system have been experimentally determined through diffusion triple technique combined with alloy samples approach.Assisted with electron probe microanalysis(EPMA)and X-ray diffraction(XRD)techniques,isothermal sections at 1073 and 1173 K of this system were constructed and existence of ternary phase Ti2(Ni,Pt)3 was confirmed.In addition,binary compounds Ti3Pt5 and TiPt3-were found to be stable at 1073 and 1173 K,and remarkable ternary solubility in some binary compounds was detected,e.g.,solubility of Pt in TiNi can be up to about 36%(molar fraction)at 1073 K and 40%(molar fraction)at 1173 K.Furthermore,a ternary invariant transition reaction TiNi3+Ti3Pt5→Ti2(Ni,Pt)3+TiPt3+at a temperature between 1073 and 1173 K was deduced.展开更多
The effects of solution-aging treatment on the microstructures, mechanical properties and internal friction of Ti- 55.06%Ni-0.3%Cr (mole fraction) alloy were investigated by means of tensile test, dynamic mechanical...The effects of solution-aging treatment on the microstructures, mechanical properties and internal friction of Ti- 55.06%Ni-0.3%Cr (mole fraction) alloy were investigated by means of tensile test, dynamic mechanical analysis (DMA) and spherical aberration electron microscopy (SAEM). The results show that the aged alloys with Cr3Ni2 phase always exhibit higher tensile strength and hardness than those of solution-treated alloy without Cr3Ni2 phase, and the aging peak temperature presents at 375 ℃. It is also found that the internal friction peak (tan 6) value decreases with increasing the frequency. There are two internal friction peaks corresponding to the B2(austenite)→R and R→M(martensite) transformations upon cooling, but only one corresponding to the reverse M→B2 transformation upon heating in both solution-treated and 375 ℃-aged alloys, due to the superposition of Mand R phase transformation. Besides, the position of internal friction peaks in the alloy after aging at 375 ℃ shifts to higher temperature. This is attributed to the decrease of Cr and Ni content, and the decline of lattice deformation and transformation resistance, all of which are related to the precipitation of Cr3Ni2 phase in the solution-aged alloys.展开更多
In order to improve the low ductility of the Mo-Ni alloy,Fe is added and the effects of Ni/Fe mass ratio on the densification behavior,microstructure evolution and mechanical properties of alloy were investigated.The ...In order to improve the low ductility of the Mo-Ni alloy,Fe is added and the effects of Ni/Fe mass ratio on the densification behavior,microstructure evolution and mechanical properties of alloy were investigated.The experimental results show that when iron is added to 95Mo-5Ni alloy,the formation of brittle intermetallic phaseδ-MoNi at the grain boundary is avoided.Meanwhile,the grain growth of Mo is also effectively inhibited in the sintering process.However,the addition of iron reduces the degree of densification of alloy since the activation effect of Ni is superior to that of Fe.From the experimental results,it could be concluded that the maximum hardness and bending strength are achieved by 95Mo-1.5Ni-3.5Fe alloy,which are HV 614 and 741 MPa,respectively.Combined with the analyses of bending fracture mechanism,the improvement relative to Mo-Ni alloy is likely attributed to the inhibition of the brittle phase.展开更多
The potentiostatic electrodeposition of Zn-Ni-Mn was carried out in an alkaline solution with the addition of Mn salt.The effects of electrolyte Mn2+concentration and deposition potential on the surface morphology,pha...The potentiostatic electrodeposition of Zn-Ni-Mn was carried out in an alkaline solution with the addition of Mn salt.The effects of electrolyte Mn2+concentration and deposition potential on the surface morphology,phase structure and corrosion behavior of coatings were studied.The results of corrosion polarization showed that the presence of higher Mn content in Zn-Ni-Mn coatings could lead to the formation of a good passive layer with a 7-fold increase in Rp of coating and a significant decrease in the corrosion current density compared to those of Zn-Ni coating.The XRD and the XPS analyses from the surface of Zn-Ni-Mn after corrosion test showed that the passive layer was composed of zinc hydroxide chloride,zinc oxide,zinc hydroxide carbonate,and manganese oxides.展开更多
The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were...The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were investigated.Experimentalresults indicate that by substitution of Fe for Ni,the microstructure and crystal structure of the alloys change at room temperature.Compared with Ni50Mn38Sn12alloy,the martensitic transformation starting temperature of Ni47Fe3Mn38Sn12alloy is decreased by32.5K.It is also found that martensitic transformation occurs over a broad temperature window from288.9to352.2K.It is found that themechanical properties of Ni-Mn-Sn alloy can be significantly improved by Fe addition.The Ni47Fe3Mn38Sn12alloy achieves amaximum compressive strength of855MPa with a fracture strain of11%.Moreover,the mechanism of the mechanical propertyimprovement is clarified.Fe doping changes the fracture type from intergranular fracture of Ni50Mn38Sn12alloy to transgranularcleavage fracture of Ni47Fe3Mn38Sn12alloys.展开更多
The active sites of monodisperse transition metal Ni-clusters were anchored on carbon nitride(CN)by an in situ photoreduction deposition method to promote the efficient separation of photogenerated charges and achieve...The active sites of monodisperse transition metal Ni-clusters were anchored on carbon nitride(CN)by an in situ photoreduction deposition method to promote the efficient separation of photogenerated charges and achieve high-efficiency photocatalytic activity for hydrogen evolution.The Ni-cluster/CN exhibited a photocatalytic hydrogen production rate of 16.5 mmol·h^(-1)·g^(-1) and a total turnover frequency(TOF(H_(2)))value of 461.14 h^(-1).X-ray absorption spectroscopy based on synchrotron radiation indicated that CN had two reaction centers to form stable interface interactions with monodispersed Ni-clusters,in which carbon can act as an electron acceptor,while nitrogen can act as an electron donor.Meanwhile,the hybrid electronic structure of the Ni-cluster/CN system was constructed,which was favorable for photocatalytic activity for hydrogen production.An in-depth understanding of the interfacial interaction between CN and Ni-clusters will have important reference significance on the mechanistic study of development based on the cocatalyst.展开更多
Role of Ni(Fe)-macrostructures due to H-bonds in mechanisms of Ni(Fe)ARD action in methionine salvage pathway is discussed. The AFM method was used to research the possibility of the formation of stable supramolec...Role of Ni(Fe)-macrostructures due to H-bonds in mechanisms of Ni(Fe)ARD action in methionine salvage pathway is discussed. The AFM method was used to research the possibility of the formation of stable supramolecular nanostructures based on Ni(Fe)ARD model systems {Ni(acac)2 + L2 + Tyr} (L2 = NMP (NMP = N-Methyl-2-pirrolidone), His (His = L-Histidine), Tyr (Tyr = L-Tyrosine)---with the assistance of intermolecular H-bonds. In the course of scanning of investigated samples, it has been found that the structures based on model systems are fixed on a surface strongly enough due to H-bonding. The self-assembly-driven growth of the supramolecular structures on modified Silicone surface based on researched complexes, due to H-bonds and perhaps the other non-covalent interactions was observed.展开更多
基金National Natural Science Foundation of China (50671084 and 50875217)Natural Science Foundation of Shaanxi Province (2003E106, SJ08-ZT05)China Postdoctoral Science Foundation (20070420218)
基金Project(51134002)supported by the National Natural Science Foundation of ChinaProject(2012BAB14B02)supported by the Ministry of Science and Technology of ChinaProject(12120113086600)supported by Ministry of Land and Resources of China
文摘A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results indicate that the metallic nickel and iron gradually assemble and grow into larger spherical particles with increasing temperature and prolonging time. After reduction, the nickel laterite ore obviously changes into two parts of Fe-Ni metallic particles and slag matrix. An obvious relationship is found between the reduction of iron magnesium olivine and its crystal chemical properties. The nickel and iron oxides are reduced to metallic by reductant, and the lattice of olivine is destroyed. The entire reduction process is comprised of oxide reduction and metallic phase growth.
基金Projects(50371104,50771106and50731002)supported by the National Natural Science Foundation of ChinaProject(2008K22)supported by the Scientific Research Foundation of Hunan Provincial Department of Land&Resources,ChinaProject supported by Geology Exploration Foundation of Hunan Provincial Department of Land&Resources,China
文摘Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as substitutional solution phases,of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial.The intermetallic compound,BiNi,was modeled using three sublattices(Bi)(Ni,Va)(Ni,Va) considering its crystal structure(NiAs-type) and the compatibility of thermodynamic database in the multi-component systems,while Bi3Ni was treated as a stoichiometric compound.Finally,a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in this binary system were obtained.The calculated results are in reasonable agreement with the reported experimental data.
基金Project (10520706400) supported by the Science and Technology Commission of Shanghai Municipality,ChinaProject (2007CB613606) supported by the National Basic Research Program of ChinaProjects (50774052,51074105) supported by the National Natural Science Foundation of China
文摘The Ti-Ni-O ternary system was assessed by means of Calphad method using ternary experimental data in previous study.Isothermal sections at 1 173 and 1 273 K were calculated.The result shows that the present calculated results are in good agreement with most of the experimental results.The consistent model parameter set determined in this work may provide theoretical guidance for the deoxidation of TiNi alloy.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51771035,51671037)Natural Science Foundation of Jiangsu Province,China(BK20161190)the Priority Academic Program of Jiangsu Higher Education Institutions,China.
文摘The effects of Fe content on the microstructure,phase constituents and microhardness of the as-cast,800℃or 1000℃-annealed Al_(7)Cr_(20)Fe_(x)Ni_(73)−x(x=13−66)alloys were investigated.Not all these alloys are composed of the single FCC phase.The BCC and B2 phases are found.It is confirmed that the BCC phase in the Al7Cr20Fe66Ni7 alloy is transformed from the FCC phase at about 900℃ during cooling.While in the 800℃-annealed Al7Cr20Fe60Ni13 alloy,the FCC phase is stable and the hardness decreases.After annealing at 1000℃,for the precipitation of the B2 particles,the Al content in the FCC phase decreases,which results in decreasing of the alloy hardness.Moreover,after annealing at 800℃,a small amount of Al-rich B2 particles precipitate at the phase boundary and some nanocrystal BCC phase precipitates in the FCC matrix,which increases the hardness of the Al_(7)Cr_(20)Fe_(x)Ni_(73)−x(x=41−49)alloys.These results will help to the composition design and processing design of the Al−Cr−Fe−Ni based high-entropy alloys.
基金Project(2016YFB0701404)supported by the National Key Research and Development Program of ChinaProject(51171210)supported by the National Natural Science Foundation of ChinaProject(2014CB6644002)supported by the National Basic Research Program of China
文摘Phase relations of the Ti-Ni-Sn ternary system were investigated via alloy sampling assisted with X-ray diffractometry(XRD)and electron probe micro-analysis(EPMA).A new binary phase with composition of TiSn4(molar fraction,%)was detected at 508 K.In addition,a supplementary phase(Ti1-x-yNixSny)Ni3(τ,AuCu3-type)was observed at 873 and 973 K.According to the characterised microscopic structure in various annealed alloys,four ternary phases were detected in Ti-Ni-Sn ternary system:TiNiSn,TiNi2Sn,Ti2Ni2Sn and(Ti1-x-yNixSny)Ni3.Additionally,isothermal sections of Ti-Ni-Sn ternary system at 508,873 and 973 K were constructed.By comparing three isothermal sections,a peri-eutectic reaction,L+TiNi2Sn→Ni3Sn4+TiNiSn,was deduced,which occurs at a temperature between 873 and 973 K.Furthermore,the solubility of Sn in TiNi and Ni in Ti5Sn3 was detected.
文摘The morphology evolution and phase transformation of Al9(Mn,Ni)2 eutectic phase in an Al-4Ni-2Mn alloy during heat treatment at 600°C were studied by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Results show that nearly all of the eutectic fibers change into prolate ellipsoid and spherical particles in the process of heat treatment,and Ostwald ripening phenomenon occurs in the eutectic region with the increase of the heat treatment time.Besides,a phase transformation from Al9(Mn,Ni)2 to O-phase is confirmed.The morphologies of the transformed particles indicate that the O-phase preferentially nucleates on the specific crystal plane of the Al9(Mn,Ni)2 eutectic phase and grows in a certain direction.During the phase transformation,the(010)[001]slip system in O-phase is activated,and the resultant slip traces appear on the surface of some O-phase particles.
基金Project(51271027)supported by the National Natural Science Foundation of ChinaProject(T201308)supported by Shenzhen Key Laboratory of Special Functional Materials of Shenzhen University,China
文摘On the basis of the experimental data of phase equilibria and thermochemical properties available from literatures, a critical assessment for the Ni?Yb binary system was carried out using the CALPHAD (calculation of phase diagrams) method. The liquid phase is modeled as the associate model with the constituent species Ni, Yb and YbNi3, owing to the sharp change of the enthalpy of mixing of liquid phase at the composition of around 25% Yb (mole fraction). The terminal solid solutions FCC_A1 (Ni/Yb) and BCC_A2 (Yb) are described by the substitutional solution model with the Redlich?Kister polynomial. The intermetallic compounds, Yb2Ni17, YbNi5, YbNi3, YbNi2, α-YbNi and β-YbNi, are treated as strict stoichiometric compounds, since there are no noticeable homogeneity ranges reported for these compounds. A set of self-consistent thermodynamic parameters for the Ni?Yb binary system are obtained. According to the presently assessed results, the thermochemical properties and the phase boundary data can be well reproduced.
基金Projects (50771037, 50371020) supported by the National Natural Science Foundation of ChinaProject (2011B090400485) supported by the Combination Project for Guangdong Province and the Ministry of Education, China
文摘Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (1373 K, 1473 K, and 1573 K) for 2 h. The results show that more Sn substitution reduces the content of γ-phase and a partial phase of martensite can be obtained in Co38Ni34Al28-xSnx (x=1, 2, 3) alloys after treatment at 1573 K for 2 h. The maximum martensite phase appears when 2% Al is substituted by Sn. The reverse martensitic transformation temperature of Co38Ni34Al28-xSnx alloys increases at x=1 and 2, then decreases as x=3. As the content of Sn and the temperature increase, the microhardness will increase.
基金Project(2016YFB0701404)supported by the National Key Research and Development Program of ChinaProject(51171210)supported by the National Natural Science Foundation of China
文摘Phase equilibria in Ti?Ni?Pt ternary system have been experimentally determined through diffusion triple technique combined with alloy samples approach.Assisted with electron probe microanalysis(EPMA)and X-ray diffraction(XRD)techniques,isothermal sections at 1073 and 1173 K of this system were constructed and existence of ternary phase Ti2(Ni,Pt)3 was confirmed.In addition,binary compounds Ti3Pt5 and TiPt3-were found to be stable at 1073 and 1173 K,and remarkable ternary solubility in some binary compounds was detected,e.g.,solubility of Pt in TiNi can be up to about 36%(molar fraction)at 1073 K and 40%(molar fraction)at 1173 K.Furthermore,a ternary invariant transition reaction TiNi3+Ti3Pt5→Ti2(Ni,Pt)3+TiPt3+at a temperature between 1073 and 1173 K was deduced.
文摘The effects of solution-aging treatment on the microstructures, mechanical properties and internal friction of Ti- 55.06%Ni-0.3%Cr (mole fraction) alloy were investigated by means of tensile test, dynamic mechanical analysis (DMA) and spherical aberration electron microscopy (SAEM). The results show that the aged alloys with Cr3Ni2 phase always exhibit higher tensile strength and hardness than those of solution-treated alloy without Cr3Ni2 phase, and the aging peak temperature presents at 375 ℃. It is also found that the internal friction peak (tan 6) value decreases with increasing the frequency. There are two internal friction peaks corresponding to the B2(austenite)→R and R→M(martensite) transformations upon cooling, but only one corresponding to the reverse M→B2 transformation upon heating in both solution-treated and 375 ℃-aged alloys, due to the superposition of Mand R phase transformation. Besides, the position of internal friction peaks in the alloy after aging at 375 ℃ shifts to higher temperature. This is attributed to the decrease of Cr and Ni content, and the decline of lattice deformation and transformation resistance, all of which are related to the precipitation of Cr3Ni2 phase in the solution-aged alloys.
基金Project(51734002)supported by the National Natural Science Foundation of China。
文摘In order to improve the low ductility of the Mo-Ni alloy,Fe is added and the effects of Ni/Fe mass ratio on the densification behavior,microstructure evolution and mechanical properties of alloy were investigated.The experimental results show that when iron is added to 95Mo-5Ni alloy,the formation of brittle intermetallic phaseδ-MoNi at the grain boundary is avoided.Meanwhile,the grain growth of Mo is also effectively inhibited in the sintering process.However,the addition of iron reduces the degree of densification of alloy since the activation effect of Ni is superior to that of Fe.From the experimental results,it could be concluded that the maximum hardness and bending strength are achieved by 95Mo-1.5Ni-3.5Fe alloy,which are HV 614 and 741 MPa,respectively.Combined with the analyses of bending fracture mechanism,the improvement relative to Mo-Ni alloy is likely attributed to the inhibition of the brittle phase.
文摘The potentiostatic electrodeposition of Zn-Ni-Mn was carried out in an alkaline solution with the addition of Mn salt.The effects of electrolyte Mn2+concentration and deposition potential on the surface morphology,phase structure and corrosion behavior of coatings were studied.The results of corrosion polarization showed that the presence of higher Mn content in Zn-Ni-Mn coatings could lead to the formation of a good passive layer with a 7-fold increase in Rp of coating and a significant decrease in the corrosion current density compared to those of Zn-Ni coating.The XRD and the XPS analyses from the surface of Zn-Ni-Mn after corrosion test showed that the passive layer was composed of zinc hydroxide chloride,zinc oxide,zinc hydroxide carbonate,and manganese oxides.
基金Projects(51471064,51301054)supported of the National Natural Science Foundation of ChinaProject(1253-NCET-009)supported by the Program for New Century Excellent Talents,China+1 种基金Project(1251G022)supported by Program for Youth Academic Backbone in Heilongjiang Provincial University,ChinaProject(12541138)supported by Scientific Research Fund of Heilongjiang Provincial Education Department,China
文摘The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were investigated.Experimentalresults indicate that by substitution of Fe for Ni,the microstructure and crystal structure of the alloys change at room temperature.Compared with Ni50Mn38Sn12alloy,the martensitic transformation starting temperature of Ni47Fe3Mn38Sn12alloy is decreased by32.5K.It is also found that martensitic transformation occurs over a broad temperature window from288.9to352.2K.It is found that themechanical properties of Ni-Mn-Sn alloy can be significantly improved by Fe addition.The Ni47Fe3Mn38Sn12alloy achieves amaximum compressive strength of855MPa with a fracture strain of11%.Moreover,the mechanism of the mechanical propertyimprovement is clarified.Fe doping changes the fracture type from intergranular fracture of Ni50Mn38Sn12alloy to transgranularcleavage fracture of Ni47Fe3Mn38Sn12alloys.
文摘The active sites of monodisperse transition metal Ni-clusters were anchored on carbon nitride(CN)by an in situ photoreduction deposition method to promote the efficient separation of photogenerated charges and achieve high-efficiency photocatalytic activity for hydrogen evolution.The Ni-cluster/CN exhibited a photocatalytic hydrogen production rate of 16.5 mmol·h^(-1)·g^(-1) and a total turnover frequency(TOF(H_(2)))value of 461.14 h^(-1).X-ray absorption spectroscopy based on synchrotron radiation indicated that CN had two reaction centers to form stable interface interactions with monodispersed Ni-clusters,in which carbon can act as an electron acceptor,while nitrogen can act as an electron donor.Meanwhile,the hybrid electronic structure of the Ni-cluster/CN system was constructed,which was favorable for photocatalytic activity for hydrogen production.An in-depth understanding of the interfacial interaction between CN and Ni-clusters will have important reference significance on the mechanistic study of development based on the cocatalyst.
文摘Role of Ni(Fe)-macrostructures due to H-bonds in mechanisms of Ni(Fe)ARD action in methionine salvage pathway is discussed. The AFM method was used to research the possibility of the formation of stable supramolecular nanostructures based on Ni(Fe)ARD model systems {Ni(acac)2 + L2 + Tyr} (L2 = NMP (NMP = N-Methyl-2-pirrolidone), His (His = L-Histidine), Tyr (Tyr = L-Tyrosine)---with the assistance of intermolecular H-bonds. In the course of scanning of investigated samples, it has been found that the structures based on model systems are fixed on a surface strongly enough due to H-bonding. The self-assembly-driven growth of the supramolecular structures on modified Silicone surface based on researched complexes, due to H-bonds and perhaps the other non-covalent interactions was observed.