The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al ele...The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.展开更多
A Ni-7Cr-4Al(mass fraction, %) nanocomposite was fabricated by co-electrodeposition of Ni with Cr(40 nm) and Al(100 nm) nanoparticles from a nickel sulfate bath, and its oxidation at 800 °C in air and hot c...A Ni-7Cr-4Al(mass fraction, %) nanocomposite was fabricated by co-electrodeposition of Ni with Cr(40 nm) and Al(100 nm) nanoparticles from a nickel sulfate bath, and its oxidation at 800 °C in air and hot corrosion under molten 75% Na2SO4 + 25% Na Cl salts(mass fraction) at 750 °C were investigated. For comparison, Ni-11 Cr nanocomposite and Ni-film were also investigated in order to elucidate the effect of Cr nanoparticles. The results indicate that Cr and Al nanoparticles are dispersed in the electrodeposited nanocrystalline Ni grains(in size range of 20-60 nm). Ni-7Cr-4Al nanocomposite exhibits a dramatically increased oxidation resistance compared with Ni-11 Cr nanocomposite and Ni-film due to the fast formation of alumina scale, which also improves its hot corrosion resistance under molten 75% Na2SO4 + 25% Na Cl salts.展开更多
基金Projects(51571214,51301205,51101126)supported by the National Natural Science Foundation of ChinaProject(P2014-07)supported by the Open Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,China+4 种基金Project(20130162120001)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(K1308034-11)supported by the Changsha Municipal Science and Technology Plan,ChinaProjects(2015GK3004,2015JC3006)supported by the Science and Technology Project of Hunan Province,ChinaProject supported by the Innovation-driven Plan in Central South University,ChinaProject supported by the Independent Project of State Key Laboratory of Powder Metallurgy of Central South University,China
文摘The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.
基金Project(11531319)supported by the Scientific Research Fund of Heilongjiang Provincial Education Department,China
文摘A Ni-7Cr-4Al(mass fraction, %) nanocomposite was fabricated by co-electrodeposition of Ni with Cr(40 nm) and Al(100 nm) nanoparticles from a nickel sulfate bath, and its oxidation at 800 °C in air and hot corrosion under molten 75% Na2SO4 + 25% Na Cl salts(mass fraction) at 750 °C were investigated. For comparison, Ni-11 Cr nanocomposite and Ni-film were also investigated in order to elucidate the effect of Cr nanoparticles. The results indicate that Cr and Al nanoparticles are dispersed in the electrodeposited nanocrystalline Ni grains(in size range of 20-60 nm). Ni-7Cr-4Al nanocomposite exhibits a dramatically increased oxidation resistance compared with Ni-11 Cr nanocomposite and Ni-film due to the fast formation of alumina scale, which also improves its hot corrosion resistance under molten 75% Na2SO4 + 25% Na Cl salts.