In this work, a quaternary Ni-Cu-Nb-Ta system has been designed to obtain composite microstructure with sphericalcrystalline Cu-rich particles embedded in amorphous Ni-rich matrix. The alloy samples were prepared by u...In this work, a quaternary Ni-Cu-Nb-Ta system has been designed to obtain composite microstructure with sphericalcrystalline Cu-rich particles embedded in amorphous Ni-rich matrix. The alloy samples were prepared by using single-roller melting-spinning method. The microstructure and thermal properties of the as-quenched alloy samples were char-acterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, anddifferential scanning calorimetry. It shows that the spherical crystalline Cu-rich particles are embedded in the amorphousNi-rich matrix. The average size of the Cu-rich particles is strongly dependent upon the Cu content. The effect of the alloycomposition on the behavior of liquid-liquid phase separation and microstructure evolution was discussed. The phaseformation in the Ni-based metallic glass matrix composite was analyzed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51774264,51574216 and 51374194)the Natural Science Foundation of Liaoning Province of China(Grant No.2015020172)
文摘In this work, a quaternary Ni-Cu-Nb-Ta system has been designed to obtain composite microstructure with sphericalcrystalline Cu-rich particles embedded in amorphous Ni-rich matrix. The alloy samples were prepared by using single-roller melting-spinning method. The microstructure and thermal properties of the as-quenched alloy samples were char-acterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, anddifferential scanning calorimetry. It shows that the spherical crystalline Cu-rich particles are embedded in the amorphousNi-rich matrix. The average size of the Cu-rich particles is strongly dependent upon the Cu content. The effect of the alloycomposition on the behavior of liquid-liquid phase separation and microstructure evolution was discussed. The phaseformation in the Ni-based metallic glass matrix composite was analyzed.