Carbon nanotube(CNT) cathodes prepared by electrophoretic deposition were treated by a combination of nickel electroplating and cathode corrosion technologies.The characteristics of the samples were measured by scan...Carbon nanotube(CNT) cathodes prepared by electrophoretic deposition were treated by a combination of nickel electroplating and cathode corrosion technologies.The characteristics of the samples were measured by scanning electron microscopy,energy dispersive X-ray spectroscopy,J-E and F-N plots.After the treatment,the CNT cathodes showed improved field emission properties such as turn-on field,threshold electric field,current density,stability and luminescence uniformity.Concretely,the turn-on field decreased from 0.95 to 0.45 V/μm at an emission current density of 1 mA/cm^2,and the threshold electric field decreased from 0.99 to 0.46 V/μm at a current density of 3 mA/cm^2.The maximum current density was up to 7 mA/cm2 at a field of 0.48 V/μm.In addition,the current density of the CNT cathodes fluctuated at around 0.7 mA/cm^2 for 20 h,with an initial current density 0.75 mA/cm^2.The improvement in field emission properties was found to be due to the exposure of more CNT tips,the wider gaps among the CNTs and the infiltration of nickel particles.展开更多
基金Project supported by the National High Technology Research and Development Program of China(No.2008AA03A313)the National Natural Science Foundation of China(No.61106053)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20103514110007)
文摘Carbon nanotube(CNT) cathodes prepared by electrophoretic deposition were treated by a combination of nickel electroplating and cathode corrosion technologies.The characteristics of the samples were measured by scanning electron microscopy,energy dispersive X-ray spectroscopy,J-E and F-N plots.After the treatment,the CNT cathodes showed improved field emission properties such as turn-on field,threshold electric field,current density,stability and luminescence uniformity.Concretely,the turn-on field decreased from 0.95 to 0.45 V/μm at an emission current density of 1 mA/cm^2,and the threshold electric field decreased from 0.99 to 0.46 V/μm at a current density of 3 mA/cm^2.The maximum current density was up to 7 mA/cm2 at a field of 0.48 V/μm.In addition,the current density of the CNT cathodes fluctuated at around 0.7 mA/cm^2 for 20 h,with an initial current density 0.75 mA/cm^2.The improvement in field emission properties was found to be due to the exposure of more CNT tips,the wider gaps among the CNTs and the infiltration of nickel particles.