The effects of sodium-metallochlorophylls including sodium-iron chlorophyllin, sodium-copper chlorophyllin and sodium-magnesium chlorophyllin on performance of Ni/MH battery were investigated. The results show that so...The effects of sodium-metallochlorophylls including sodium-iron chlorophyllin, sodium-copper chlorophyllin and sodium-magnesium chlorophyllin on performance of Ni/MH battery were investigated. The results show that sodium-iron chlorophyllin can effectively activate the gases produced during charge in Ni/MH battery, therefore reducing the reduction potential of oxygen and the oxidation potential of hydrogen, and the increased speed of inner pressure of battery is decreased significantly. With the aid of DMol3 software, the activation process of oxygen and hydrogen by sodiummetallochlorophylls was simulated and analyzed. It was found that the catalysis behavior is in agreement with the experimental results, and the activation process also gets a reasonable explanation from the calculated results.展开更多
The effects of iron phthalocyanine (FePc) and cobalt porphyrin (CoPp) on inner pressure and cycle behavior of sealed Ni-MH batteries were investigated in this study. The morphology of battery elec- trode was observed ...The effects of iron phthalocyanine (FePc) and cobalt porphyrin (CoPp) on inner pressure and cycle behavior of sealed Ni-MH batteries were investigated in this study. The morphology of battery elec- trode was observed by SEM. The electrochemical impedance spectroscopy of floating-charge/dis- charge battery was also measured. Experimental results show that the addition of FePc or CoPp to the alloy electrode is an effective approach to decrease the internal pressure of battery during the process of charge and overcharge. In contrast to CoPp, the battery with FePc exhibits a slower capacity decay and a smaller overpotential at the same charge-discharge rate. As an electrocatalyst, FePc may more effectively speed up the reduction of oxygen, and decrease its reduction potential. As a result, the charge process is accelerated, the gas evolution is reduced and the pulverization of electrode materials is slowed down.展开更多
基金Supported by the State Key Development Prongram for Basic Research of China (Grant No. 2009CB220100)National High-tech R & D Program of China (Grant No. 2007AA11A101)
文摘The effects of sodium-metallochlorophylls including sodium-iron chlorophyllin, sodium-copper chlorophyllin and sodium-magnesium chlorophyllin on performance of Ni/MH battery were investigated. The results show that sodium-iron chlorophyllin can effectively activate the gases produced during charge in Ni/MH battery, therefore reducing the reduction potential of oxygen and the oxidation potential of hydrogen, and the increased speed of inner pressure of battery is decreased significantly. With the aid of DMol3 software, the activation process of oxygen and hydrogen by sodiummetallochlorophylls was simulated and analyzed. It was found that the catalysis behavior is in agreement with the experimental results, and the activation process also gets a reasonable explanation from the calculated results.
基金Supported by the National Key Basic Research and Development Program (Grand No. 2002CB211800)the National Key Program for Basic Research of China (Grant No. 2001CCA05000)
文摘The effects of iron phthalocyanine (FePc) and cobalt porphyrin (CoPp) on inner pressure and cycle behavior of sealed Ni-MH batteries were investigated in this study. The morphology of battery elec- trode was observed by SEM. The electrochemical impedance spectroscopy of floating-charge/dis- charge battery was also measured. Experimental results show that the addition of FePc or CoPp to the alloy electrode is an effective approach to decrease the internal pressure of battery during the process of charge and overcharge. In contrast to CoPp, the battery with FePc exhibits a slower capacity decay and a smaller overpotential at the same charge-discharge rate. As an electrocatalyst, FePc may more effectively speed up the reduction of oxygen, and decrease its reduction potential. As a result, the charge process is accelerated, the gas evolution is reduced and the pulverization of electrode materials is slowed down.