期刊文献+
共找到1,275篇文章
< 1 2 64 >
每页显示 20 50 100
Effect of wear conditions on tribological properties of electrolessly-deposited Ni-P-Gr-SiC hybrid composite coating 被引量:2
1
作者 何美凤 胡文彬 +3 位作者 钟澄 翁俊飞 沈彬 仵亚婷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2586-2592,共7页
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the... The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily. 展开更多
关键词 electroless composite coating ni-P coating GRAPHITE sic tribological property SELF-LUBRICATION synergic effect
下载PDF
MICROSTRUCTURE OF ELECTRODEPOSITED Ni-W-P-SiC COMPOSITE COATINGS 被引量:11
2
作者 Guo, Zhongcheng Yang, Xianwan Liu, Hongkang 《中国有色金属学会会刊:英文版》 EI CSCD 1997年第1期23-27,共5页
MICROSTRUCTUREOFELECTRODEPOSITEDNiWPSiCCOMPOSITECOATINGS①GuoZhongcheng,YangXianwan,LiuHongkangDepartmento... MICROSTRUCTUREOFELECTRODEPOSITEDNiWPSiCCOMPOSITECOATINGS①GuoZhongcheng,YangXianwan,LiuHongkangDepartmentofMetalurgy,Kunmin... 展开更多
关键词 ELECTRODEPOSITION ni W P sic composite coatingS MICROSTRUCTURE
下载PDF
Corrosion resistance of electrodeposited RE-Ni-W-P-SiC composite coating 被引量:15
3
作者 郭忠诚 朱晓云 杨显万 《中国有色金属学会会刊:英文版》 CSCD 2001年第3期413-416,共4页
Immersion experiment results show that corrosion rate of the as deposited RE Ni W P SiC composite coating in HCl solutions increases with the rise of HCl concentration. On the contrary, the corrosion rate of the compo... Immersion experiment results show that corrosion rate of the as deposited RE Ni W P SiC composite coating in HCl solutions increases with the rise of HCl concentration. On the contrary, the corrosion rate of the composite coating after heat treatment decreases with increasing HCl concentration. The corrosion rates of the composite coatings in as deposited state and after heat treatment in H 2SO 4 and H 3PO 4 solutions respectively decrease with the rise of H 2SO 4 and H 3PO 4 concentrations. The corrosion rate of the composite coating as deposited in FeCl 3 solutions decreases with increasing FeCl 3 concentration, while the rate of the composite coating after heat treatment increases with the rise of FeCl 3 concentration. The corrosion rate of 316L stainless steel in the corrosion media of H 2SO 4, HCl, H 3PO 4 and FeCl 3 solutions at different concentrations increases with rising concentration. In addition, the corrosion rate of 316L stainless steel in the corrosion media of H 2SO 4, HCl, H 3PO 4 and FeCl 3 solutions respectively is much greater than that of the RE Ni W P SiC composite coating as deposited and after heat treatment in the same corrosion media. [ 展开更多
关键词 corrosion resistance RE ni W P sic composite coating ELECTRODEPOSITION
下载PDF
Effects of addition of rare earth on properties and structures of Ni-W-B-SiC composite coatings 被引量:4
4
作者 郭忠诚 翟大成 杨显万 《中国有色金属学会会刊:英文版》 CSCD 2000年第4期538-541,共4页
The effects of rare earth (RE) on the composition, phase structures, surface morphologies and hardness of electrodeposited RE Ni W B SiC composite coatings were discussed. The results show that W and SiC contents in t... The effects of rare earth (RE) on the composition, phase structures, surface morphologies and hardness of electrodeposited RE Ni W B SiC composite coatings were discussed. The results show that W and SiC contents in the coatings increase with the increase of RE in the bath. When RE is added in the coatings, the grains are refined and the trend of formation of amorphous coatings is increased. Moreover, the thermal stability of the RE Ni W B SiC composite coatings is enhanced. The hardness of the coatings is increased with the increase of heat treatment temperature, and it reaches the peak value when heated at 400 ℃. Besides, the hardness of the RE Ni W B SiC coatings is higher than that of the Ni W B SiC coatings. 展开更多
关键词 RE ni W B sic composite coating PROPERTIES ELECTRODEPOSITION
下载PDF
Microstructure of electrodeposited RE-Ni-W-P-SiC composite coating 被引量:3
5
作者 郭忠诚 朱诚意 +1 位作者 翟大成 杨显万 《中国有色金属学会会刊:英文版》 EI CSCD 2000年第1期50-52,共3页
The components and microstructure of the RE Ni W P SiC composite coating were analyzed by means of EPXDS, SEM and XRD. The results showed that the composite coating containing 5%~14%RE, 4%~7%SiC, 12%~15%P and 5%~6... The components and microstructure of the RE Ni W P SiC composite coating were analyzed by means of EPXDS, SEM and XRD. The results showed that the composite coating containing 5%~14%RE, 4%~7%SiC, 12%~15%P and 5%~6%W was obtained by use of appropriate bath composition and plating conditions. The as deposited composite coating is amorphous and it becomes mixture when the temperature is raised from 200 ℃ to 400 ℃. However, the composite coating is crystal when the temperature is over 400 ℃. Scanning electron microscopy indicates that the heat treatment temperature has no effect on the surface morphologies of the RE Ni W P SiC composite coating. This is to say that the composite coating has a better heat stability of microstructure and high temperature oxidation. 展开更多
关键词 ELECTRODEPOSITION RE ni W P sic composite coating MICROSTRUCTURE
下载PDF
PROPERTIES OF ELECTRODEPOSITED AMORPHOUS Ni-W-P-SiC COMPOSITE COATINGS 被引量:16
6
作者 GUO Zhongcheng LIU Hongkang +1 位作者 WANG Zhiyin WANG Min(Department of Metallurgy,Kunming institute of Technology,Kunming 650093,China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第1期44-48,共5页
The Effects of heat treatment temperature on the hardness,wear resistance and structure of the amorphous Ni-W-P-SiC composite coatings have been investigated.The results show that Ni-W-P-SiC composite coatings are amo... The Effects of heat treatment temperature on the hardness,wear resistance and structure of the amorphous Ni-W-P-SiC composite coatings have been investigated.The results show that Ni-W-P-SiC composite coatings are amorphous under 300℃, partially crystalline at 300-400℃,and crystalline when heat treatment temperature reaches 400℃,the crystals being fine Ni3P phase particles.The hardness,wear resistance and the crystallization temperature of the composite coatings increase when an additive is added into the bath.The hardness and wear resistance of the coatings increase with increasing heat treatment temperature,and they will reach their peak values when the heat treatment temperature reaches 400℃.Corrosion experiment indicates that the corrosion resistance of amorphous Ni-W-P-SiC composite coatings in various kinds of corrosive media except nitric acid is better than that of stainless steel 1Cr18Ni9Ti.Scanning electron microscopy observation shows that the additive has no effect on the surface appearance of the coatings,but the current density and the pH value have considerable effects on the surface appearance. 展开更多
关键词 ELECTRODEPOSITION ni-W-P-sic composite coating AMORPHOUS
下载PDF
Wetting of molten Sn-3.5Ag-0.5Cu on Ni-P(-SiC) coatings deposited on high volume faction SiC/Al composite 被引量:5
7
作者 Xiang-zhao ZHANG Xiao-lang WU +4 位作者 Gui-wu LIU Wen-qiang LUO Ya-jie GUO Hai-cheng SHAO Guan-jun QIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第9期1784-1792,共9页
The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting s... The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting systems were analyzed.The SiC particles are evenly distributed in the coating and enveloped with Ni.No reaction layer is observed at the coating/SiCp/Al composite interfaces.The contact angle increases from^19°with the Ni-P coating to 29°,43°and 113°with the corresponding Ni-P-3SiC,Ni-P-6SiC and Ni-P-9SiC coatings,respectively.An interaction layer containing Cu,Ni,Sn and P forms at the Sn-Ag-Cu/Ni-P-(0,3,6)SiC coated SiCp/Al interfaces,and the Cu-Ni-Sn and Ni-Sn-P phases are detected in the interaction layer.Moreover,the molten Sn-Ag-Cu can penetrate into the Ni-P(-SiC)coatings through the Ni-P/SiC interface and dissolve them to contact the SiCp/Al substrate. 展开更多
关键词 ni coating Sn-Ag-Cu alloy sicp/Al composite WETTING microstructures interface
下载PDF
CATHODIC PROCESS AND WEAR RESISTANCE OF ELECTRO-DEPOSITED RE-Ni-W-P-SiC COMPOSITE COATING 被引量:16
8
作者 Z.C.Guo,X.Y.Zhu,R.D.Xu and X.W.YangFaculty of Material and Metallurgy Engineering, Kunming University of Science and Technology, Kunming650093, ChinaManuscript received 26 December 2001 in revised form 23 April 2002 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第4期369-374,共6页
Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-Si... Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-SiC and RE-Ni-W-P-SiC composite coatings. On the contrary, the addition of PTFE in the bath decreases cathodic deposition current density of the coatings. The current density increases a little when the amount of RE is 7-9g/l; however, the current density increases greatly when the amount of RE is increased to 11-13g/l. Bui ij the amount of RE is raised further, the current density decreases. Hardness and wear resistance of RE-Ni-W-P-SiC composite coating have been studied, and the results show that the hardness and wear resistance of RE-Ni-W-P-SiC composite coating increase with increasing heat treatment tempera-ture, which reach peak values at 400℃; while the hardness and wear resistance of the coating decrease with the rise of heat treated temperature continuously. 展开更多
关键词 ELECTRODEPOSITION RE-ni-W-P-sic composite coating cathodic process hardness and wear resistance
下载PDF
Thermodynamics of electrodeposited Ni-B-SiC composite coatings 被引量:3
9
作者 郭忠诚 朱晓云 杨显万 《中国有色金属学会会刊:英文版》 CSCD 2001年第5期800-802,共3页
The φ pH diagram of Ni B H 2O system was drawn, and the mechanism of electrodepositing Ni B SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H 2 because o... The φ pH diagram of Ni B H 2O system was drawn, and the mechanism of electrodepositing Ni B SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H 2 because of the over potential of H 2 evolution on the Fe substrate. Boron can not singly deposit in aqueous solution. Nickel and boron can co deposit in the form of Ni 4B 3 without evolution of hydrogen when the cathodical potential is kept to be -1.415 ~ -1.700?V. 展开更多
关键词 ni B sic composite coating φ pH diagram ELECTRODEPOSITION
下载PDF
STUDY ON PROPERTIES OF PULSE ELECTRODEPOSITED RE-Ni-W-P-SiC COMPOSITE COATINGS 被引量:7
10
作者 Z.C. Guo X.Y. Zhu R.D. Xu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第2期111-116,共6页
The effects of pulse frequency f and duty cycle r on the deposition rate, composition, morphology, and hardness of pulse electrodeposited RE (rare earth)-Ni-W-P-SiC composite coatings have been studied. The results ... The effects of pulse frequency f and duty cycle r on the deposition rate, composition, morphology, and hardness of pulse electrodeposited RE (rare earth)-Ni-W-P-SiC composite coatings have been studied. The results indicate that pulse current can improve the deposition rate of RE-Ni-W-P-SiC composite coatings; W, P, and SiC contents in the coating decrease with the increase of pulse frequency and reach the lowest value at f = 33Hz, whereas the RE content in the composite coatings increases with the increase of pulse frequency. SiC content decreases with the increase of duty cycle, W content reaches the lowest value, and P content reaches the highest value at r = 0.4; pulse current and RE can lead to smaller size of the crystalline grains; however, the effects of different pulse frequency and duty cycle on the morphologies of RE-Ni-W-P-SiC composite coatings are not obvious. The hardness of RE-Ni-W-P-SiC composite coatings is the highest when the duty cycle is at 0.6 and 0.8 and pulse frequency is at 50Hz. At the same pulse frequency, the hardness of RE-Ni-W-P-SiC composite coatings at r= 0.8 is higher than that at r= 0.6. 展开更多
关键词 FREQUENCY duty cycle ELECTRODEPOSITION RE-ni-W-P-sic composite coating
下载PDF
Oxidation resistance of co-deposited Ni-SiC nanocomposite coating 被引量:3
11
作者 周月波 丁元柱 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第5期925-928,共4页
Ni-6.0%SiC (mass fraction) nanocomposite coating was prepared from a nickel sulfate bath by co-electrodeposition of Ni and SiC nanoparticles in an average size of 30 nm. The oxidation at 1 000 ℃ shows that the Ni-6.0... Ni-6.0%SiC (mass fraction) nanocomposite coating was prepared from a nickel sulfate bath by co-electrodeposition of Ni and SiC nanoparticles in an average size of 30 nm. The oxidation at 1 000 ℃ shows that the Ni-6.0%SiC nanocomposite coating has a superior oxidation resistance compared with the pure Ni film due to the formation of SiO2 oxide particles along grain boundaries, blocking the outward diffusion of Ni and changing the oxidation growth mechanism. The effect of SiC nanoparticles on the oxidation progress was discussed in detail. 展开更多
关键词 ni sic 电极沉淀 复合物 氧化反应
下载PDF
Incorporation of nano/micron-SiC particles in Ni-based composite coatings towards enhanced mechanical and anti-corrosion properties 被引量:2
12
作者 Bowei Zhang Qiao Zhang +5 位作者 Zhan Zhang Kui Xiao Qiong Yao Guojia Ma Gang Sun Junsheng Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期153-160,共8页
Ni-based composite coatings incorporated with nano/micron SiC particles were fabricated via electrochemical co-deposition in Watts bath,followed by the evaluation of their mechanical and anti-corrosion properties.The ... Ni-based composite coatings incorporated with nano/micron SiC particles were fabricated via electrochemical co-deposition in Watts bath,followed by the evaluation of their mechanical and anti-corrosion properties.The micrographic observations suggest that the SiC particles with various sizes can be well incorporated to the Ni substrate.X-ray diffraction(XRD)patterns indicate that SiC particles with smaller sizes could weaken the preferential growth of Ni along(200)facet.In addition,it is found that the incorporated SiC particles with medium micron sizes(8 and 1.5μm)could significantly enhance the micro-hardness of the Ni composite coatings.Nevertheless,electrochemical measurements demonstrate that micron-sized SiC particles would weaken the corrosion resistance of Ni composite coatings ascribed to the structure defects induced.In contrast,the combined incorporation of nanosized(50 nm)SiC particles with medium micron(1.5μm)ones is capable of promoting the compactness of the composite coatings,which is beneficial to the long-term corrosion resistance with negligible micro-hardness loss. 展开更多
关键词 Watts bath ni coating sic particles corrosion resistance ELECTRODEPOSITION
下载PDF
Corrosion resistance of electrodeposited RE-Ni-W-P-SiC-PTFE composite coating in phosphoric and ferric chloride 被引量:7
13
作者 徐瑞东 郭忠诚 潘君益 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第3期666-670,共5页
Corrosion rate and anode polarization curves of electrodeposited RE-Ni-W-P-SiC-PTFE composite coating in various concentrations of phosphoric and ferric chloride were researched. The results show that corrosion rate o... Corrosion rate and anode polarization curves of electrodeposited RE-Ni-W-P-SiC-PTFE composite coating in various concentrations of phosphoric and ferric chloride were researched. The results show that corrosion rate of the composite coatings increases with the increasing concentrations of phosphoric and ferric chloride, and reaches the maximum value when phosphoric concentration is 40% and ferric chloride concentration is 20% (mass fraction, the same below if not mentioned). Anode polarization curves of the composite coatings show that anode polarization current density of the composite coatings heat-treated at 200 ℃ or 500 ℃ is lower than that of other coatings heat-treated at 300 ℃ or 400 ℃, which displays that the composite coatings heat-treated at 200 ℃ or 500 ℃ have better corrosion resistance. Besides, corrosion resistance of the composite coating heat-treated at 500 ℃ is better than that as deposited and RE-Ni-W-P-SiC composite coating heat-treated at 400 ℃, and is also better than that of 316L stainless steel. 展开更多
关键词 电镀 RE-ni-W-P-sic-PTFE 复合涂层 腐蚀速率 氯化铁
下载PDF
Preparation and Anti-oxidation Mechanism of Mullite/Yttrium Silicate Coatings on C/SiC Composites 被引量:3
14
作者 马青松 cai lihui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1284-1288,共5页
In order to enhance the oxidation resistance of C/Si C composites, mullite/yttrium silicate coatings were fabricated on C/Si C composites through dip-coating route. Al_2O_3-SiO_2 sol with high solid content was select... In order to enhance the oxidation resistance of C/Si C composites, mullite/yttrium silicate coatings were fabricated on C/Si C composites through dip-coating route. Al_2O_3-SiO_2 sol with high solid content was selected as the raw material for mullite and "silicone resin + Y_2O_3 powder" slurry was used to synthesize yttrium silicate. The microstructure and phase composition of coatings were characterized, and the investigation on oxidation resistance and anti-oxidation mechanism was emphasized. The as-fabricated coatings consisting of SiO_2-rich mullite phase and Y_2Si_2O_7 phase show high density and favorable bonding to C/Si C composites. After oxidized at 1 400 ℃ and 1 500 ℃ for 30 min in static air, the coating-containing C/Si C composites possess 91.9% and 102.4% of the original flexural strength, respectively. The desirable thermal stability of coatings and the further densification of coatings due to viscous flow of rich SiO_2 and Y-Si-Al-O glass are responsible for the excellent oxidation resistance. In addition, the coating-containing composites retain 99.0% of the original flexural strength and the coatings exhibit no cracking and desquamation after 12 times of thermal shock from 1 400 ℃ to room temperature, which are ascribed to the combination of anti-oxidation mechanism and preferable physical and chemical compatibility among C/Si C composites, mullite and Y_2Si_2O_7. The carbothermal reaction at 1 600 ℃ between free carbon in C/Si C substrate and rich SiO_2 in mullite results in severe frothing and desquamation of coatings and obvious degradation in oxidation resistance. 展开更多
关键词 anti-oxidation coatings mullite yttrium silicate C/sic composites
下载PDF
PROCESS AND PROPERTIES OF ELECTROLESS PLATING RE-Ni-B-SiC COMPOSITE COATINGS 被引量:9
15
作者 GUO Zhongcheng LIU Hongkang +1 位作者 WANG Zhiyin WANG Min(Kunming Institute of Technology,Kunming. China ) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第2期118-122,共5页
Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity o... Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively. 展开更多
关键词 electroless plating ni-B-sic-RE composite coating
下载PDF
Preparation and oxidation property of ZrB_2-MoSi_2/SiC coating on carbon/carbon composites 被引量:14
16
作者 张武装 曾毅 +2 位作者 GBOLOGAH Lemuel 熊翔 黄伯云 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1538-1544,共7页
To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB... To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature. 展开更多
关键词 carbon/carbon composites ZrB2-MoSi2 sic coating OXIDATION
下载PDF
Double SiC coating on carbon/carbon composites against oxidation by a two-step method 被引量:7
17
作者 孙粲 李贺军 +2 位作者 付前刚 张佳平 彭晗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2107-2112,共6页
To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer... To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer uniform and compact SiC coating was obtained by low pressure chemical vapor deposition. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD analyses. Oxidation behaviour of the SiC coated C/C composites was also investigated. It was found that the double SiC coating could protect C/C composites against oxidation at 1773 K in air for 178 h with a mass loss of 1.25%. The coated samples also underwent thermal shocks between 1773 K and room temperature 16 times. The mass loss of the coated C/C composites was only 2.74%. Double SiC layer structures were uniform and dense, and can suppress the generation of thermal stresses, facilitating an excellent anti-oxidation coating. 展开更多
关键词 carbon/carbon composites sic OXIDATION coating
下载PDF
C/SiC/MoSi_2-SiC-Si multilayer coating for oxidation protection of carbon/carbon composites 被引量:5
18
作者 张雨雷 李贺军 +2 位作者 胡志雄 李克智 张磊磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2118-2122,共5页
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the... C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating. 展开更多
关键词 C/C composites C/sic MOSI2 sic MULTILAYER coating OXIDATION
下载PDF
Influence of vacuum heat treatment on structure and micro-hardness of electroless Ni-P-SiC composite coating 被引量:1
19
作者 龙士国 马增胜 +1 位作者 胡文彬 周益春 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期874-877,共4页
The electroless Ni-P-SiC composite coatings were prepared and the influence of vacuum heat treatment on its structure and properties was analyzed. The Ni-P-SiC composite coatings were characterized by morphology,struc... The electroless Ni-P-SiC composite coatings were prepared and the influence of vacuum heat treatment on its structure and properties was analyzed. The Ni-P-SiC composite coatings were characterized by morphology,structure and micro-hardness. The morphology and structure of the Ni-P-SiC composite coatings were studied by scanning electron microscopy(SEM) and X-ray diffractometry(XRD),respectively. A great deal of particles incorporation and uniform distribution were found in Ni-P-SiC composite coatings. XRD results show a broad peak of nickel and low intensity SiC peaks present on as-deposited condition. Micro-hardness of as-deposited Ni-P-SiC composite coatings is improved greatly,and the best micro-hardness is obtained after heat treatment in a high vacuum at 400 ℃ . 展开更多
关键词 化学镀层 镍-磷-碳化硅涂层 真空热处理 结构 微观硬度
下载PDF
Oxidation behavior of C/C composites with SiC/ZrSiO_4-SiO_2 coating 被引量:3
20
作者 李杨 肖鹏 +2 位作者 李专 罗威 周伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期397-405,共9页
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r... A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%. 展开更多
关键词 C/C composite sic/ZrSiO4-SiO2 coating oxygen partial pressure ANTI-OXIDATION thermal shock residual compressive strength
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部