TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a ni...TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a nickel cetyltrimethylammonium bromide and hexadecylpyridinium bromide solution containing TiB2 and Dy2O3 particles. The content of codeposited TiB2 and Dy2O3 in the composite coatings was controlled by adding TiB2 and Dy2O3 particles of different concentrations into the solution, respectively. The effects of TiB2 and Dy2O3 content on microhardness, wear mass loss and friction coefficients of composite coatings were investigated. The composite coatings were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and scanning electron microscopy (SEM) techniques. Ni-TiBE-Dy2O3 composite coatings showed higher microhardness, lower wear mass loss and friction coefficient compared with those of the pure Ni coating and Ni-TiB2 composite coatings. The wear mass loss of Ni-TiB2-Dy2O3 composite coatings was 9 and 1.57 times lower than that of the pure Ni coating and Ni-TiB2 composite coatings, respectively. The friction coefficient of pure Ni coating, Ni-TiB2 and Ni-TiB2-Dy2O3 composite coatings were 0.723, 0.815 and 0.619, respectively. Ni-TiBE-Dy2O3 composite coatings displayed the least friction coefficient among the three coatings. Dy2O3 particles in composite coatings might serve as a solid lubricant between contact surfaces to decrease the friction coefficient and abate the wear of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Dy2O3 particles were closely related to the content of Dy2O3 particles in the composite coatings.展开更多
The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning elect...The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning electrical microscope (SEM), X-ray diffraction(XRD) and energy dispersive spectrum(EDS). The results showed that the corrosion of all composite coatings was accelerated under NaCl deposits, and the corrosion products were rather porous with poor adherence to the matrix. Al2O3 particles in the coatings can refine the grain size and improve the high temperature corrosion resistance of the coatings. Within the test scope, the more Al2O3 particles in the coatings, the lower corrosion rates could be obtained, and the corrosion mechanism was also discussed.展开更多
Immersion experiment results show that corrosion rate of the as deposited RE Ni W P SiC composite coating in HCl solutions increases with the rise of HCl concentration. On the contrary, the corrosion rate of the compo...Immersion experiment results show that corrosion rate of the as deposited RE Ni W P SiC composite coating in HCl solutions increases with the rise of HCl concentration. On the contrary, the corrosion rate of the composite coating after heat treatment decreases with increasing HCl concentration. The corrosion rates of the composite coatings in as deposited state and after heat treatment in H 2SO 4 and H 3PO 4 solutions respectively decrease with the rise of H 2SO 4 and H 3PO 4 concentrations. The corrosion rate of the composite coating as deposited in FeCl 3 solutions decreases with increasing FeCl 3 concentration, while the rate of the composite coating after heat treatment increases with the rise of FeCl 3 concentration. The corrosion rate of 316L stainless steel in the corrosion media of H 2SO 4, HCl, H 3PO 4 and FeCl 3 solutions at different concentrations increases with rising concentration. In addition, the corrosion rate of 316L stainless steel in the corrosion media of H 2SO 4, HCl, H 3PO 4 and FeCl 3 solutions respectively is much greater than that of the RE Ni W P SiC composite coating as deposited and after heat treatment in the same corrosion media. [展开更多
The Effects of heat treatment temperature on the hardness,wear resistance and structure of the amorphous Ni-W-P-SiC composite coatings have been investigated.The results show that Ni-W-P-SiC composite coatings are amo...The Effects of heat treatment temperature on the hardness,wear resistance and structure of the amorphous Ni-W-P-SiC composite coatings have been investigated.The results show that Ni-W-P-SiC composite coatings are amorphous under 300℃, partially crystalline at 300-400℃,and crystalline when heat treatment temperature reaches 400℃,the crystals being fine Ni3P phase particles.The hardness,wear resistance and the crystallization temperature of the composite coatings increase when an additive is added into the bath.The hardness and wear resistance of the coatings increase with increasing heat treatment temperature,and they will reach their peak values when the heat treatment temperature reaches 400℃.Corrosion experiment indicates that the corrosion resistance of amorphous Ni-W-P-SiC composite coatings in various kinds of corrosive media except nitric acid is better than that of stainless steel 1Cr18Ni9Ti.Scanning electron microscopy observation shows that the additive has no effect on the surface appearance of the coatings,but the current density and the pH value have considerable effects on the surface appearance.展开更多
The fixing of a silane coupling agent to Zn-Ni-silica(SiO_(2))composite coatings was studied for the purpose of developing a coating process as an alternative to chromating.The corrosion resistance of Zn-Ni-silica com...The fixing of a silane coupling agent to Zn-Ni-silica(SiO_(2))composite coatings was studied for the purpose of developing a coating process as an alternative to chromating.The corrosion resistance of Zn-Ni-silica composite coatings was rem arkably improved by the silica nanoparticles in the composite,which were disper sed in the surface of this film.The silane coupling agent formed chemical bonds with the inorganic silica particles during the silane coupling treatment on the se composite coatings.The treatment suppressed the formation of white corrosion products to the same extent as chromating,as measured in salt spray tests.It is concluded that treating Zn-Ni-silica composite coatings with silane coupling agents is a viable alternative technique to chromating.展开更多
The φ pH diagram of Ni B H 2O system was drawn, and the mechanism of electrodepositing Ni B SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H 2 because o...The φ pH diagram of Ni B H 2O system was drawn, and the mechanism of electrodepositing Ni B SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H 2 because of the over potential of H 2 evolution on the Fe substrate. Boron can not singly deposit in aqueous solution. Nickel and boron can co deposit in the form of Ni 4B 3 without evolution of hydrogen when the cathodical potential is kept to be -1.415 ~ -1.700?V.展开更多
Micrometer and nanometer Cr particles were co-deposited with Ni by electroplating from a nickel sulfate bath containing a certain content of Cr particles. Cr microparticles are in a size range of 1-5 μm and Cr nanopa...Micrometer and nanometer Cr particles were co-deposited with Ni by electroplating from a nickel sulfate bath containing a certain content of Cr particles. Cr microparticles are in a size range of 1-5 μm and Cr nanoparticles have an average size of 40 nm. The friction and the wear performance of the co-deposited Ni-Cr composite coatings were comparatively evaluated by sliding against Si3N4 ceramic balls under non-lubricated conditions. It is found that the incorporation of Cr particles enhances the microhardness and wear resistance of Ni coatings. The wear resistance of Ni composite coating containing Cr nanoparticles is higher than that of the Ni composite coating containing Cr microparticles with a comparable Cr particle content. The co-deposition of smaller nanometer Cr particles with Ni effectively reduces the size of Ni crystals and significantly increases the hardness of the composite coatings due to grain-refinement strengthening and dispersion-strengthening,resulting in a significant improvement of wear resistance of the Ni-Cr nanocomposite coatings.展开更多
The effects of pulse frequency f and duty cycle r on the deposition rate, composition, morphology, and hardness of pulse electrodeposited RE (rare earth)-Ni-W-P-SiC composite coatings have been studied. The results ...The effects of pulse frequency f and duty cycle r on the deposition rate, composition, morphology, and hardness of pulse electrodeposited RE (rare earth)-Ni-W-P-SiC composite coatings have been studied. The results indicate that pulse current can improve the deposition rate of RE-Ni-W-P-SiC composite coatings; W, P, and SiC contents in the coating decrease with the increase of pulse frequency and reach the lowest value at f = 33Hz, whereas the RE content in the composite coatings increases with the increase of pulse frequency. SiC content decreases with the increase of duty cycle, W content reaches the lowest value, and P content reaches the highest value at r = 0.4; pulse current and RE can lead to smaller size of the crystalline grains; however, the effects of different pulse frequency and duty cycle on the morphologies of RE-Ni-W-P-SiC composite coatings are not obvious. The hardness of RE-Ni-W-P-SiC composite coatings is the highest when the duty cycle is at 0.6 and 0.8 and pulse frequency is at 50Hz. At the same pulse frequency, the hardness of RE-Ni-W-P-SiC composite coatings at r= 0.8 is higher than that at r= 0.6.展开更多
Hardness, friction and wear characteristics of electrodeposited RE Ni W P B 4C PTFE composite coatings were studied, and the reason for these fine characteristics was explained in respect of structure. The results sho...Hardness, friction and wear characteristics of electrodeposited RE Ni W P B 4C PTFE composite coatings were studied, and the reason for these fine characteristics was explained in respect of structure. The results show that 1) the structure of RE Ni W P B 4C PTFE composite coatings experiences a transformation process from amorphous to mixture then to crystal as the heat treatment temperature rises; 2) incorporating of B 4C greatly increases the hardness of the coating; 3) the wear resistance of the coating is best with heat treatment for 1?h at 300?℃, which is greatly superior to that of the other traditional coatings.展开更多
The high temperature oxidation resistance of RE Ni W B B 4C MoS 2 composite coating, the effects of electrodeposition conditions on the morphologies of the coating and the effect of heat treatment temperature on its h...The high temperature oxidation resistance of RE Ni W B B 4C MoS 2 composite coating, the effects of electrodeposition conditions on the morphologies of the coating and the effect of heat treatment temperature on its hardness, abrasion resistance and phase structure were investigated by using scanning electron microscope(SEM), X ray diffractometer, microhardness tester and abrasion machine. The results show that the oxidation degree of RE Ni W B B 4C MoS 2 composite coating is small when the temperature is lower than 700 ℃, but it increases sharply when the temperature is higher than 700 ℃. The hardness of RE Ni W B B 4C MoS 2 composite coating increases with increasing heat treatment temperature, it comes up to the maximum value at 400 ℃,but it decreases gradually if the temperature rises continuously. The most favourable abrasion resistance was attained after RE Ni W B B 4C MoS 2 composite coating being heat treated at 400 ℃. Without heat treating, it is mainly amorphous and partially crystallized, but wholly crystallized after being heat treated at 500 ℃. RE in the composite coating is in the form of CeO 2 and additions of CeO 2 and B 4C can enhance the thermostability of RE Ni W B B 4C MoS 2 composite coating.展开更多
Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particula...Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particulates. To avoid poor inter-face bonding and stress distribution,the gradient structure of biology materials was found as the model and therefore the gradient composite coating was prepared. The morphology of the composite coatings was flatter and the microstructure was denser than that of pure Ni-Co coatings. The composite coatings were prepared by different current densities,and the 2-D and 3-D morphologies of the surface coatings were observed. The result indicated that the 2-D structure became rougher and the 3-D surface density of apices became less when the current density was increased. The content of nanoparticulates reached a maximum value at the current density of 40mA·cm^-2,at the same time the properties including microhardness and wear-resistance were analyzed. The microhardness reached a maximum value and the wear volume was also less at the current density of 40mA·cm^-2. The reason was that nano-Al2O3 particles caused dispersive strengthening and grain refining.展开更多
Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemica...Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.展开更多
The components and microstructure of the RE Ni W P SiC composite coating were analyzed by means of EPXDS, SEM and XRD. The results showed that the composite coating containing 5%~14%RE, 4%~7%SiC, 12%~15%P and 5%~6...The components and microstructure of the RE Ni W P SiC composite coating were analyzed by means of EPXDS, SEM and XRD. The results showed that the composite coating containing 5%~14%RE, 4%~7%SiC, 12%~15%P and 5%~6%W was obtained by use of appropriate bath composition and plating conditions. The as deposited composite coating is amorphous and it becomes mixture when the temperature is raised from 200 ℃ to 400 ℃. However, the composite coating is crystal when the temperature is over 400 ℃. Scanning electron microscopy indicates that the heat treatment temperature has no effect on the surface morphologies of the RE Ni W P SiC composite coating. This is to say that the composite coating has a better heat stability of microstructure and high temperature oxidation.展开更多
The n-SiO2/Ni composite electro-brush plating coating was prepared on the 1045 steel substrate. SEM and TEM were utilized to analyze the surface and cross-section morphologies or the microstructures of the composite c...The n-SiO2/Ni composite electro-brush plating coating was prepared on the 1045 steel substrate. SEM and TEM were utilized to analyze the surface and cross-section morphologies or the microstructures of the composite coating before and after heat treatment, as well as a micro-hardness tester was used to measure the micro-hardness before and after heat treatment. The results show that the entrance of nano SiO2 particles into composite coating makes the micro-hardness higher. After heat treatment, due to the obstruction to growth of Ni crystals from nano particles, the composite coating still possesses a higher micro-hardness than that of common Ni-base coating.展开更多
The oxidation behaviors of Fe26Cr1Mo with and without the Ni La 2O 3 electrodeposited composite film have been investigated by thermogravimetric analysis (TGA) and a scanning electron microscope equipped with an en...The oxidation behaviors of Fe26Cr1Mo with and without the Ni La 2O 3 electrodeposited composite film have been investigated by thermogravimetric analysis (TGA) and a scanning electron microscope equipped with an energy dispersive analytical X ray system(SEM/EDAX). The experimental results show that the oxide scale growing on Fe26Cr1Mo exposed at 900 ℃ spalled severely during cooling, while after the stainless steel was coated with the Ni La 2O 3 electrodeposited composite film, its high temperature cyclic oxidation resistance was significantly improved. The reason is that a La 2O 3 modified NiO scale, which has a superior adhesion to the substrate, was formed on the Fe26Cr1Mo stainless steel coated with Ni La 2O 3 composite film.展开更多
The effects of rare earth (RE) on the composition, phase structures, surface morphologies and hardness of electrodeposited RE Ni W B SiC composite coatings were discussed. The results show that W and SiC contents in t...The effects of rare earth (RE) on the composition, phase structures, surface morphologies and hardness of electrodeposited RE Ni W B SiC composite coatings were discussed. The results show that W and SiC contents in the coatings increase with the increase of RE in the bath. When RE is added in the coatings, the grains are refined and the trend of formation of amorphous coatings is increased. Moreover, the thermal stability of the RE Ni W B SiC composite coatings is enhanced. The hardness of the coatings is increased with the increase of heat treatment temperature, and it reaches the peak value when heated at 400 ℃. Besides, the hardness of the RE Ni W B SiC coatings is higher than that of the Ni W B SiC coatings.展开更多
The components, surface and cross sectional morphologies, and the effects of heat treatment temperature on phase structure, hardness, abrasion resistance and oxidation resistance of pulse electrodeposition RE-Ni-W-B-B...The components, surface and cross sectional morphologies, and the effects of heat treatment temperature on phase structure, hardness, abrasion resistance and oxidation resistance of pulse electrodeposition RE-Ni-W-B-B4C-PTFE composite coatings, were all investigated. The results show that W and B contents increase in the RE-Ni-W-B composite coating by using pulse electrodeposition. RE, PTFE and B4C particles can be co-deposited into the Ni-W-B composite coating, but the amount is very little. X-ray diffraction analysis displays that the RE-Ni-W-B-B4C-PTFE composite coating is mainly amorphous, partially crystallized as-deposited, but it turns into crystalline state and PTFE in the coatings will decompose after the heat treatment temperature is higher than 400℃. The hardness of the composite coating increases with increasing heat treatment temperature, it comes up to the highest value at 400℃. The oxidized film mass of the composite coating increases slowly when the oxidation temperature is lower than 500℃, but it increases linearly and sharply after the oxidation temperature is higher than 600℃.展开更多
基金supported by the Science Technology Foundation of Shanghai (072305113)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Science Technology Foundation of Shanghai Institute of Technology (KJ2008-07)
文摘TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a nickel cetyltrimethylammonium bromide and hexadecylpyridinium bromide solution containing TiB2 and Dy2O3 particles. The content of codeposited TiB2 and Dy2O3 in the composite coatings was controlled by adding TiB2 and Dy2O3 particles of different concentrations into the solution, respectively. The effects of TiB2 and Dy2O3 content on microhardness, wear mass loss and friction coefficients of composite coatings were investigated. The composite coatings were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and scanning electron microscopy (SEM) techniques. Ni-TiBE-Dy2O3 composite coatings showed higher microhardness, lower wear mass loss and friction coefficient compared with those of the pure Ni coating and Ni-TiB2 composite coatings. The wear mass loss of Ni-TiB2-Dy2O3 composite coatings was 9 and 1.57 times lower than that of the pure Ni coating and Ni-TiB2 composite coatings, respectively. The friction coefficient of pure Ni coating, Ni-TiB2 and Ni-TiB2-Dy2O3 composite coatings were 0.723, 0.815 and 0.619, respectively. Ni-TiBE-Dy2O3 composite coatings displayed the least friction coefficient among the three coatings. Dy2O3 particles in composite coatings might serve as a solid lubricant between contact surfaces to decrease the friction coefficient and abate the wear of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Dy2O3 particles were closely related to the content of Dy2O3 particles in the composite coatings.
文摘The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning electrical microscope (SEM), X-ray diffraction(XRD) and energy dispersive spectrum(EDS). The results showed that the corrosion of all composite coatings was accelerated under NaCl deposits, and the corrosion products were rather porous with poor adherence to the matrix. Al2O3 particles in the coatings can refine the grain size and improve the high temperature corrosion resistance of the coatings. Within the test scope, the more Al2O3 particles in the coatings, the lower corrosion rates could be obtained, and the corrosion mechanism was also discussed.
文摘Immersion experiment results show that corrosion rate of the as deposited RE Ni W P SiC composite coating in HCl solutions increases with the rise of HCl concentration. On the contrary, the corrosion rate of the composite coating after heat treatment decreases with increasing HCl concentration. The corrosion rates of the composite coatings in as deposited state and after heat treatment in H 2SO 4 and H 3PO 4 solutions respectively decrease with the rise of H 2SO 4 and H 3PO 4 concentrations. The corrosion rate of the composite coating as deposited in FeCl 3 solutions decreases with increasing FeCl 3 concentration, while the rate of the composite coating after heat treatment increases with the rise of FeCl 3 concentration. The corrosion rate of 316L stainless steel in the corrosion media of H 2SO 4, HCl, H 3PO 4 and FeCl 3 solutions at different concentrations increases with rising concentration. In addition, the corrosion rate of 316L stainless steel in the corrosion media of H 2SO 4, HCl, H 3PO 4 and FeCl 3 solutions respectively is much greater than that of the RE Ni W P SiC composite coating as deposited and after heat treatment in the same corrosion media. [
文摘The Effects of heat treatment temperature on the hardness,wear resistance and structure of the amorphous Ni-W-P-SiC composite coatings have been investigated.The results show that Ni-W-P-SiC composite coatings are amorphous under 300℃, partially crystalline at 300-400℃,and crystalline when heat treatment temperature reaches 400℃,the crystals being fine Ni3P phase particles.The hardness,wear resistance and the crystallization temperature of the composite coatings increase when an additive is added into the bath.The hardness and wear resistance of the coatings increase with increasing heat treatment temperature,and they will reach their peak values when the heat treatment temperature reaches 400℃.Corrosion experiment indicates that the corrosion resistance of amorphous Ni-W-P-SiC composite coatings in various kinds of corrosive media except nitric acid is better than that of stainless steel 1Cr18Ni9Ti.Scanning electron microscopy observation shows that the additive has no effect on the surface appearance of the coatings,but the current density and the pH value have considerable effects on the surface appearance.
文摘The fixing of a silane coupling agent to Zn-Ni-silica(SiO_(2))composite coatings was studied for the purpose of developing a coating process as an alternative to chromating.The corrosion resistance of Zn-Ni-silica composite coatings was rem arkably improved by the silica nanoparticles in the composite,which were disper sed in the surface of this film.The silane coupling agent formed chemical bonds with the inorganic silica particles during the silane coupling treatment on the se composite coatings.The treatment suppressed the formation of white corrosion products to the same extent as chromating,as measured in salt spray tests.It is concluded that treating Zn-Ni-silica composite coatings with silane coupling agents is a viable alternative technique to chromating.
文摘The φ pH diagram of Ni B H 2O system was drawn, and the mechanism of electrodepositing Ni B SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H 2 because of the over potential of H 2 evolution on the Fe substrate. Boron can not singly deposit in aqueous solution. Nickel and boron can co deposit in the form of Ni 4B 3 without evolution of hydrogen when the cathodical potential is kept to be -1.415 ~ -1.700?V.
基金Project(9951Z012) supported by the Major Programs of the Heilongjiang Provincial Education Department, ChinaProject(11531319) supported by the Scientific Research Fund of Heilongjiang Provincial Education Department, ChinaProject(06-13) supported by the Scientific Research Startup Foundation of Heilongjiang Institute of Science and Technology, China
文摘Micrometer and nanometer Cr particles were co-deposited with Ni by electroplating from a nickel sulfate bath containing a certain content of Cr particles. Cr microparticles are in a size range of 1-5 μm and Cr nanoparticles have an average size of 40 nm. The friction and the wear performance of the co-deposited Ni-Cr composite coatings were comparatively evaluated by sliding against Si3N4 ceramic balls under non-lubricated conditions. It is found that the incorporation of Cr particles enhances the microhardness and wear resistance of Ni coatings. The wear resistance of Ni composite coating containing Cr nanoparticles is higher than that of the Ni composite coating containing Cr microparticles with a comparable Cr particle content. The co-deposition of smaller nanometer Cr particles with Ni effectively reduces the size of Ni crystals and significantly increases the hardness of the composite coatings due to grain-refinement strengthening and dispersion-strengthening,resulting in a significant improvement of wear resistance of the Ni-Cr nanocomposite coatings.
文摘The effects of pulse frequency f and duty cycle r on the deposition rate, composition, morphology, and hardness of pulse electrodeposited RE (rare earth)-Ni-W-P-SiC composite coatings have been studied. The results indicate that pulse current can improve the deposition rate of RE-Ni-W-P-SiC composite coatings; W, P, and SiC contents in the coating decrease with the increase of pulse frequency and reach the lowest value at f = 33Hz, whereas the RE content in the composite coatings increases with the increase of pulse frequency. SiC content decreases with the increase of duty cycle, W content reaches the lowest value, and P content reaches the highest value at r = 0.4; pulse current and RE can lead to smaller size of the crystalline grains; however, the effects of different pulse frequency and duty cycle on the morphologies of RE-Ni-W-P-SiC composite coatings are not obvious. The hardness of RE-Ni-W-P-SiC composite coatings is the highest when the duty cycle is at 0.6 and 0.8 and pulse frequency is at 50Hz. At the same pulse frequency, the hardness of RE-Ni-W-P-SiC composite coatings at r= 0.8 is higher than that at r= 0.6.
文摘Hardness, friction and wear characteristics of electrodeposited RE Ni W P B 4C PTFE composite coatings were studied, and the reason for these fine characteristics was explained in respect of structure. The results show that 1) the structure of RE Ni W P B 4C PTFE composite coatings experiences a transformation process from amorphous to mixture then to crystal as the heat treatment temperature rises; 2) incorporating of B 4C greatly increases the hardness of the coating; 3) the wear resistance of the coating is best with heat treatment for 1?h at 300?℃, which is greatly superior to that of the other traditional coatings.
文摘The high temperature oxidation resistance of RE Ni W B B 4C MoS 2 composite coating, the effects of electrodeposition conditions on the morphologies of the coating and the effect of heat treatment temperature on its hardness, abrasion resistance and phase structure were investigated by using scanning electron microscope(SEM), X ray diffractometer, microhardness tester and abrasion machine. The results show that the oxidation degree of RE Ni W B B 4C MoS 2 composite coating is small when the temperature is lower than 700 ℃, but it increases sharply when the temperature is higher than 700 ℃. The hardness of RE Ni W B B 4C MoS 2 composite coating increases with increasing heat treatment temperature, it comes up to the maximum value at 400 ℃,but it decreases gradually if the temperature rises continuously. The most favourable abrasion resistance was attained after RE Ni W B B 4C MoS 2 composite coating being heat treated at 400 ℃. Without heat treating, it is mainly amorphous and partially crystallized, but wholly crystallized after being heat treated at 500 ℃. RE in the composite coating is in the form of CeO 2 and additions of CeO 2 and B 4C can enhance the thermostability of RE Ni W B B 4C MoS 2 composite coating.
基金the National Natural Science Foundation of China (No50635030)the National Basic Research of China (No2007CB616913)the Program for New Century Excellent Talents in University (2005)
文摘Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particulates. To avoid poor inter-face bonding and stress distribution,the gradient structure of biology materials was found as the model and therefore the gradient composite coating was prepared. The morphology of the composite coatings was flatter and the microstructure was denser than that of pure Ni-Co coatings. The composite coatings were prepared by different current densities,and the 2-D and 3-D morphologies of the surface coatings were observed. The result indicated that the 2-D structure became rougher and the 3-D surface density of apices became less when the current density was increased. The content of nanoparticulates reached a maximum value at the current density of 40mA·cm^-2,at the same time the properties including microhardness and wear-resistance were analyzed. The microhardness reached a maximum value and the wear volume was also less at the current density of 40mA·cm^-2. The reason was that nano-Al2O3 particles caused dispersive strengthening and grain refining.
基金Project(2005CB623703) supported by the National Key Basic Research Program of ChinaProject(50474051) supported by the National Natural Science Foundation of China+2 种基金Project(CX2009B032) supported by Innovation Foundation for Postgraduate of Hunan Province of China Project(ZKJ2009024) supported by the Precious Apparatus Open Share Foundation of Central South University, ChinaProject(2009ybfz02) supported by Excellent Doctor Support Fund of Central South University,China
文摘Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.
文摘The components and microstructure of the RE Ni W P SiC composite coating were analyzed by means of EPXDS, SEM and XRD. The results showed that the composite coating containing 5%~14%RE, 4%~7%SiC, 12%~15%P and 5%~6%W was obtained by use of appropriate bath composition and plating conditions. The as deposited composite coating is amorphous and it becomes mixture when the temperature is raised from 200 ℃ to 400 ℃. However, the composite coating is crystal when the temperature is over 400 ℃. Scanning electron microscopy indicates that the heat treatment temperature has no effect on the surface morphologies of the RE Ni W P SiC composite coating. This is to say that the composite coating has a better heat stability of microstructure and high temperature oxidation.
基金Project(50235030) supported by the National Natural Science Foundation of China Project(G1999065009) supported by the National Basic Research Program of China Project(2003AA331130) supported by the Hi-tech Research and Development Program of China
文摘The n-SiO2/Ni composite electro-brush plating coating was prepared on the 1045 steel substrate. SEM and TEM were utilized to analyze the surface and cross-section morphologies or the microstructures of the composite coating before and after heat treatment, as well as a micro-hardness tester was used to measure the micro-hardness before and after heat treatment. The results show that the entrance of nano SiO2 particles into composite coating makes the micro-hardness higher. After heat treatment, due to the obstruction to growth of Ni crystals from nano particles, the composite coating still possesses a higher micro-hardness than that of common Ni-base coating.
文摘The oxidation behaviors of Fe26Cr1Mo with and without the Ni La 2O 3 electrodeposited composite film have been investigated by thermogravimetric analysis (TGA) and a scanning electron microscope equipped with an energy dispersive analytical X ray system(SEM/EDAX). The experimental results show that the oxide scale growing on Fe26Cr1Mo exposed at 900 ℃ spalled severely during cooling, while after the stainless steel was coated with the Ni La 2O 3 electrodeposited composite film, its high temperature cyclic oxidation resistance was significantly improved. The reason is that a La 2O 3 modified NiO scale, which has a superior adhesion to the substrate, was formed on the Fe26Cr1Mo stainless steel coated with Ni La 2O 3 composite film.
文摘The effects of rare earth (RE) on the composition, phase structures, surface morphologies and hardness of electrodeposited RE Ni W B SiC composite coatings were discussed. The results show that W and SiC contents in the coatings increase with the increase of RE in the bath. When RE is added in the coatings, the grains are refined and the trend of formation of amorphous coatings is increased. Moreover, the thermal stability of the RE Ni W B SiC composite coatings is enhanced. The hardness of the coatings is increased with the increase of heat treatment temperature, and it reaches the peak value when heated at 400 ℃. Besides, the hardness of the RE Ni W B SiC coatings is higher than that of the Ni W B SiC coatings.
文摘The components, surface and cross sectional morphologies, and the effects of heat treatment temperature on phase structure, hardness, abrasion resistance and oxidation resistance of pulse electrodeposition RE-Ni-W-B-B4C-PTFE composite coatings, were all investigated. The results show that W and B contents increase in the RE-Ni-W-B composite coating by using pulse electrodeposition. RE, PTFE and B4C particles can be co-deposited into the Ni-W-B composite coating, but the amount is very little. X-ray diffraction analysis displays that the RE-Ni-W-B-B4C-PTFE composite coating is mainly amorphous, partially crystallized as-deposited, but it turns into crystalline state and PTFE in the coatings will decompose after the heat treatment temperature is higher than 400℃. The hardness of the composite coating increases with increasing heat treatment temperature, it comes up to the highest value at 400℃. The oxidized film mass of the composite coating increases slowly when the oxidation temperature is lower than 500℃, but it increases linearly and sharply after the oxidation temperature is higher than 600℃.