Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the ...Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.展开更多
We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst comp...We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni2O/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 ℃, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni2O/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.展开更多
Zn/ZSM-5(NZ2) and Zn/Ni/ZSM-5(NZ3) as the catalysts for methanol to aromatics(MTA) were synthesized by a simple ultrasonic impregnation. The textural and acid properties of all catalysts were characterized using...Zn/ZSM-5(NZ2) and Zn/Ni/ZSM-5(NZ3) as the catalysts for methanol to aromatics(MTA) were synthesized by a simple ultrasonic impregnation. The textural and acid properties of all catalysts were characterized using XRD, HRTEM, NH;-TPD, Py-IR, XPS, XRF and TG techniques. The XRD and HRTEM results showed that the basic zeolite structures were not affected much with the incorporation of Zn and Ni species. However, great changes have taken place in acid properties. The Py-IR and XPS results indicated that the Zn-Lewis acid sites(ZnOH;species), which have stronger interaction with the zeolite framework compared with ZnO species, were generated at the expense of B acid sites with the incorporation of zinc species. Moreover, the product analysis results showed that the incorporation of zinc species promoted the primary aromatization by enhancing the dehydroaromatization and suppressing the cracking and subsequent H-transfer reaction. Furthermore, the addition of Ni species well inhibited the loss of zinc species by converting partial ZnO species to ZnOH;species, and thus improved the aromatization activity and catalyst stability. The catalytic performance results showed that the NZ3 possess higher conversion of methanol in a longer time and lower average rate of coke formation compared with NZ2. In addition,the NZ3 also exhibited the highest yield of BTX as the reaction proceeds.展开更多
A ZSM-5/MAPO composite catalyst was prepared by adding ZSM-5 zeolite powder to a conventional molecular sieve synthesis system, followed by modification with NH_4H_2PO_4. The samples were characterized by XRD, SEM, IR...A ZSM-5/MAPO composite catalyst was prepared by adding ZSM-5 zeolite powder to a conventional molecular sieve synthesis system, followed by modification with NH_4H_2PO_4. The samples were characterized by XRD, SEM, IR, NH_3-TPD, and BET analyses. The catalytic property of the samples toward the methanol-to-olefin(MTO) reaction was evaluated in a connected in series two-stage unit equipped with a continuous flow(once-through) fixed-bed tubular reactor similar to an industrial reactor. The first reactor mainly converted methanol into dimethyl ether and water, followed by being subject to continuous reaction in the second reactor, in which DME was converted to hydrocarbons. The composites exhibited the typical framework topology of MFI, AEI and AFI, which represented the ZSM-5 zeolite, the molecular sieves AlPO-18 or SAPO-18, AlPO-5 or SAPO-5, respectively. The composites showed several advantages for optimizing the zeolite acidity, enhancing the mass transfer, and restraining the side reactions. Catalytic reaction results showed that the composites exhibited higher selectivity to light olefins(84.0%) and lower selectivity to C_2―C_4 alkanes and C_5^+ hydrocarbons than pure ZSM-5. Moreover, the composite zeolite loaded with 3% of P demonstrated improved catalytic activity and stability for the conversion of methanol to propylene, because the coking rate was obviously suppressed.展开更多
The Cu-Mo/ZSM-5 catalysts with different Cu/Mo ratios were prepared by wetimpregnation method, and their catalytic performance for selective catalytic reduction of NO_x wasstudied. The results showed that Cu-Mo/ZSM-5 ...The Cu-Mo/ZSM-5 catalysts with different Cu/Mo ratios were prepared by wetimpregnation method, and their catalytic performance for selective catalytic reduction of NO_x wasstudied. The results showed that Cu-Mo/ZSM-5 is a very effective catalyst for NO_x catalyticreduction with ammonia, especially when Cu/Mo molar ratio is about 1.5. It not only exhibited theextremely high catalytic activity, but also showed good stability for O_2. The bulk phase structureof Cu-Mo/ZSM-5 catalysts was determined by XRD technique, and the results indicated that there is amaximum dispersion for Cu species when Cu/Mo molar ratio is 1.5, and an interaction between Cu andMo along with HZSM-5 may be present in Cu-Mo/ZSM-5, which may possibly result in a special structurefavorable for the catalytic reduction of NO_x over Cu-Mo/ZSM-5 catalyst.展开更多
The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-d...The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.展开更多
PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydr...PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed oxidation (TPO) techniques. The performances of these catalysts for propane dehydrogenation were investigated. The test results indicated that the addition of Ga not only could improve the catalytic stability and propene selectivity, but also could effectively prevent the catalysts from coking. It was found that the PtSnNaGa(0.5 m%)/ZSM-5 catalyst exhibited the best performance in terms of propene selectivity and propane conversion. The high catalytic performance was most probably attributed to the presence of Ga that could strength- en the interaction between metals and the support to stabilize the catalytic active sites.展开更多
It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to o...It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.展开更多
Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we ...Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we present the effects of water and ZSM-5 adding amounts in the synthesis solution,the hydrothermal synthesis time,and the Si/Al ratio of core ZSM-5 on the catalytic performance of ZS core–shell catalysts.The ZS core–shell catalysts were characterized by X-ray diffraction (XRD),N_2 adsorption,and NH_3 temperature-programmed desorption (NH_3-TPD) techniques.The highest PX selectivity of 95.5%was obtained for the ZS(Si/Al=140) catalyst prepared in the synthesis solution with a molar ratio of 0.2 TPAOH:1TEOS:250H_2O at 175°C and 10 r·min^(-1) for only 2 h and the corresponding toluene conversion is as high as 22.8% for the alkylation of toluene with methanol.展开更多
Methanol to gasoline reaction was investigated on two prepared ZSM-5 catalysts. The first one was a conventional catalyst denoted as ZSM-5(C) and the other was a hierarchical catalyst-ZSM-5(S) which was prepared b...Methanol to gasoline reaction was investigated on two prepared ZSM-5 catalysts. The first one was a conventional catalyst denoted as ZSM-5(C) and the other was a hierarchical catalyst-ZSM-5(S) which was prepared by incorporation of table sugar in catalyst gel during the synthesis procedure. The catalysts were characterized by FTIR, XRD, FE-SEM, N2 adsorption-desorption, NH3-TPD and TGA analytical technics. The proposed material showed pore modification as well as acidity moderating properties in ZSM-5 catalyst. The methanol to gasoline reaction was conducted in a fixed bed reactor with a WHSV of 1.5 h-1.Methanol conversions, gasoline yield and selectivity in production for the synthesized catalysts were determined by gas chromatography method. The sugar modified catalyst converted more methanol than the conventional one and an enhancement in catalyst’s life time was observed. The selectivity to aromatics and durene were reduced compared to the conventional catalyst, so the gasoline quality was also further improved. The coking rate of catalysts was calculated employing TGA method. A reduction in coking rate and an increase in coke capacity of the modified catalyst were observed.展开更多
基金funding from the European Union's Horizon 2020 Research and Innovation Program(872102)P.S.thanks the Science Achievement Scholarship of Thailand(SAST)for her research secondment at The University of Manchester.Y.J.thanks the National Natural Science Foundation of China(22378407)for funding.
文摘Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.
基金ACKNOWLEDGMENTS This work is supported by the National High Tech Research and Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the General Program of the National Natural Science Foundation of China (No.50772107).
文摘We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni2O/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 ℃, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni2O/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.
基金entrusted by the Project of "utilization of low rank coal" strategic leading special fundstrategic leading special fund of CAS (XDA-07070800 and XDA-07070400)the Opening Foundation of State Key Laboratory of Coal Conversion (J16-17-602)
文摘Zn/ZSM-5(NZ2) and Zn/Ni/ZSM-5(NZ3) as the catalysts for methanol to aromatics(MTA) were synthesized by a simple ultrasonic impregnation. The textural and acid properties of all catalysts were characterized using XRD, HRTEM, NH;-TPD, Py-IR, XPS, XRF and TG techniques. The XRD and HRTEM results showed that the basic zeolite structures were not affected much with the incorporation of Zn and Ni species. However, great changes have taken place in acid properties. The Py-IR and XPS results indicated that the Zn-Lewis acid sites(ZnOH;species), which have stronger interaction with the zeolite framework compared with ZnO species, were generated at the expense of B acid sites with the incorporation of zinc species. Moreover, the product analysis results showed that the incorporation of zinc species promoted the primary aromatization by enhancing the dehydroaromatization and suppressing the cracking and subsequent H-transfer reaction. Furthermore, the addition of Ni species well inhibited the loss of zinc species by converting partial ZnO species to ZnOH;species, and thus improved the aromatization activity and catalyst stability. The catalytic performance results showed that the NZ3 possess higher conversion of methanol in a longer time and lower average rate of coke formation compared with NZ2. In addition,the NZ3 also exhibited the highest yield of BTX as the reaction proceeds.
基金financially supported by the National International Cooperation S & T Project of China (No.2015DFA40660)
文摘A ZSM-5/MAPO composite catalyst was prepared by adding ZSM-5 zeolite powder to a conventional molecular sieve synthesis system, followed by modification with NH_4H_2PO_4. The samples were characterized by XRD, SEM, IR, NH_3-TPD, and BET analyses. The catalytic property of the samples toward the methanol-to-olefin(MTO) reaction was evaluated in a connected in series two-stage unit equipped with a continuous flow(once-through) fixed-bed tubular reactor similar to an industrial reactor. The first reactor mainly converted methanol into dimethyl ether and water, followed by being subject to continuous reaction in the second reactor, in which DME was converted to hydrocarbons. The composites exhibited the typical framework topology of MFI, AEI and AFI, which represented the ZSM-5 zeolite, the molecular sieves AlPO-18 or SAPO-18, AlPO-5 or SAPO-5, respectively. The composites showed several advantages for optimizing the zeolite acidity, enhancing the mass transfer, and restraining the side reactions. Catalytic reaction results showed that the composites exhibited higher selectivity to light olefins(84.0%) and lower selectivity to C_2―C_4 alkanes and C_5^+ hydrocarbons than pure ZSM-5. Moreover, the composite zeolite loaded with 3% of P demonstrated improved catalytic activity and stability for the conversion of methanol to propylene, because the coking rate was obviously suppressed.
文摘The Cu-Mo/ZSM-5 catalysts with different Cu/Mo ratios were prepared by wetimpregnation method, and their catalytic performance for selective catalytic reduction of NO_x wasstudied. The results showed that Cu-Mo/ZSM-5 is a very effective catalyst for NO_x catalyticreduction with ammonia, especially when Cu/Mo molar ratio is about 1.5. It not only exhibited theextremely high catalytic activity, but also showed good stability for O_2. The bulk phase structureof Cu-Mo/ZSM-5 catalysts was determined by XRD technique, and the results indicated that there is amaximum dispersion for Cu species when Cu/Mo molar ratio is 1.5, and an interaction between Cu andMo along with HZSM-5 may be present in Cu-Mo/ZSM-5, which may possibly result in a special structurefavorable for the catalytic reduction of NO_x over Cu-Mo/ZSM-5 catalyst.
基金supported by the National Basic Research Program of China(Grant 2005CB 221405)
文摘The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.
基金supports provided by the Production and Research Prospective Joint Research Project (BY2009153)the Science and Technology Support Program (BE2008129)of jiansu Province of chinathe National Natural Science Foundation of China(50873026)
文摘PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed oxidation (TPO) techniques. The performances of these catalysts for propane dehydrogenation were investigated. The test results indicated that the addition of Ga not only could improve the catalytic stability and propene selectivity, but also could effectively prevent the catalysts from coking. It was found that the PtSnNaGa(0.5 m%)/ZSM-5 catalyst exhibited the best performance in terms of propene selectivity and propane conversion. The high catalytic performance was most probably attributed to the presence of Ga that could strength- en the interaction between metals and the support to stabilize the catalytic active sites.
文摘It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.
基金Supported by the National Natural Science Foundation of China(21676238)
文摘Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we present the effects of water and ZSM-5 adding amounts in the synthesis solution,the hydrothermal synthesis time,and the Si/Al ratio of core ZSM-5 on the catalytic performance of ZS core–shell catalysts.The ZS core–shell catalysts were characterized by X-ray diffraction (XRD),N_2 adsorption,and NH_3 temperature-programmed desorption (NH_3-TPD) techniques.The highest PX selectivity of 95.5%was obtained for the ZS(Si/Al=140) catalyst prepared in the synthesis solution with a molar ratio of 0.2 TPAOH:1TEOS:250H_2O at 175°C and 10 r·min^(-1) for only 2 h and the corresponding toluene conversion is as high as 22.8% for the alkylation of toluene with methanol.
基金the Petrochemical Research and Technology Company, Tehran, Iran for financial support of this research
文摘Methanol to gasoline reaction was investigated on two prepared ZSM-5 catalysts. The first one was a conventional catalyst denoted as ZSM-5(C) and the other was a hierarchical catalyst-ZSM-5(S) which was prepared by incorporation of table sugar in catalyst gel during the synthesis procedure. The catalysts were characterized by FTIR, XRD, FE-SEM, N2 adsorption-desorption, NH3-TPD and TGA analytical technics. The proposed material showed pore modification as well as acidity moderating properties in ZSM-5 catalyst. The methanol to gasoline reaction was conducted in a fixed bed reactor with a WHSV of 1.5 h-1.Methanol conversions, gasoline yield and selectivity in production for the synthesized catalysts were determined by gas chromatography method. The sugar modified catalyst converted more methanol than the conventional one and an enhancement in catalyst’s life time was observed. The selectivity to aromatics and durene were reduced compared to the conventional catalyst, so the gasoline quality was also further improved. The coking rate of catalysts was calculated employing TGA method. A reduction in coking rate and an increase in coke capacity of the modified catalyst were observed.