Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, ins...Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.展开更多
A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found tha...A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found that the introduction of basic additives enhanced the basicities of catalyats and promoted the dispersities of Ni particles by strong interaction between Ni2+ and basic additives. Among the Ni based catalysts, 10%Ni/10%La203/ZrO2 showed the superior performance in sorbitol hydrogenolysis. The synergistic effect of Ni and La203 was proven to play an essential role in selective synthesis of EG and 1,2-PG. In the optimal reaction condition, the catalyst presented 100% sorbitol conversion and over 48% glycols (EG and 1,2-PG) yield. The kinetics study of polyols (sorbitol, xylitol and glycerol) hydrogenolysis showed that polyols with more hydroxyl number have higher activity and products distribution was final results of kinetic balance, which could give us some inspiration abeut how to change the products selectivity.展开更多
The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction o...The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Among multitudinous metal‐oxide catalysts for the selective catalytic reduction of NOx with NH3(NH3‐SCR),Mn‐based catalysts have become very popular and developed rapidly in recent years because of its superior low...Among multitudinous metal‐oxide catalysts for the selective catalytic reduction of NOx with NH3(NH3‐SCR),Mn‐based catalysts have become very popular and developed rapidly in recent years because of its superior low‐temperature denitrification activity,mainly originating from multi‐valence of Mn.Most studies suggest that the catalytic activity of multi‐component oxides is superior to that of single‐component catalysts owing to the synergistic effect among the metallic elements in such materials,of which more attentions have been given to Ce as an additive owing to its powerful oxygen storage capacity,redox ability and its ready availability.As the core of SCR technology,the research points in catalyst development at the present stage of all researchers in countries mainly centralize on the optimization of active components,carriers,calcination temperature,calcination time and temperature‐raising procedure,giving little thought to the effects of the calcination atmosphere.In the present work,Ce‐modified Mn‐based catalysts were prepared by a simple impregnation method.The effects of the calcination atmosphere(N2,air or O2)on the performance of the resulting materials during NH3‐SCR and its causes of the differences were subsequently investigated and characterized using various analytical methods.Data obtained from X‐ray diffraction,thermogravimetry and temperature‐programmed reduction with hydrogen show that calcination under N2reduces both the degree of oxidation and crystallization of the MnOx.Scanning electron microscopy also demonstrates that the use of N2inhibits the growth of grains and increases the dispersion of the catalysts.In addition,the results of temperature‐programmed desorption with ammonia indicate that catalysts calcined under N2exhibit a greater quantity of acid sites.Finally,X‐ray photoelectron spectrometry and activity results demonstrate that MnOx in the lower valence states is more favorable for NH3‐SCR reactions.In conclusion,catalysts calcined under N2show superior performance during NH3‐SCR for NOx removal,allowing NO conversions up to94%at473K.展开更多
Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the s...Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.展开更多
A series of Ni/SBA-15 catalysts with Ni contents ranging from 5wt% to 20wt% as well as 10wt%Ni/10wt%CexZr1-xO2/SBA-15 (x=0, 0.5, 1) were prepared. The structures of the catalysts were characterized using XRD, TPR, T...A series of Ni/SBA-15 catalysts with Ni contents ranging from 5wt% to 20wt% as well as 10wt%Ni/10wt%CexZr1-xO2/SBA-15 (x=0, 0.5, 1) were prepared. The structures of the catalysts were characterized using XRD, TPR, TEM and BET techniques. The catalytic activities of the catalysts for steam reforming of methane were evaluated in a continuous flow microreactor. The results indicated that both the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts had good catalytic activities at at- mospheric pressure. The 10wt%Ni/SBA-15 catalyst exhibited excellent stability at 800 ℃ for time on stream of 740 h. After the reaction, carbon deposits were not formed on the surface of the catalyst. There existed a regular hexagonal mesoporous structure in the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts. The nickel species and the CexZr1-xO2 component were all confined in the SBA-15 mesopores. The CexZr1-xO2 could promote dispersion of the nickel species in the Ni/CexZr1-xO2/SBA-15 catalysts.展开更多
Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethyl...Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethylene oligomerization and polymerization reactions, activated by methylaluminoxane (MAO). The MAO-treated 1-3b presents an active catalytic center, which may oligomerize and polymerize ethylene to produce linear α-olefins and polyethylene, respectively. The molecular weight distributions of oligomers that are obtained are in good agreement with the Schulz-Flory rules for oligomers〉C4. The activity of 3b-MAO complex is 6.3×10^7 g/(molNi.h) at 50 ℃. The activities and molecular weight distributions of oligomers show significant reliance on the structures of catalyst precursors.展开更多
Fischer‐Tropsch synthesis(FTS)has the potential to be a powerful strategy for producing liquid fuels from syngas if highly selective catalysts can be developed.Herein,a series of iron nanoparticle catalysts encapsula...Fischer‐Tropsch synthesis(FTS)has the potential to be a powerful strategy for producing liquid fuels from syngas if highly selective catalysts can be developed.Herein,a series of iron nanoparticle catalysts encapsulated by nitrogen‐doped graphitic carbon were prepared by a one‐step pyrolysis of a ferric L‐glutamic acid complex.The FeC‐800 catalyst pyrolyzed at 800°C showed excellent catalytic activity(239.4μmolCO gFe–1 s–1),high C5–C11 selectivity(49%),and good stability in FTS.The high dispersion of ferric species combined with a well‐encapsulated structure can effectively inhibit the migration of iron nanoparticles during the reaction process,which is beneficial for high activity and good stability.The nitrogen‐doped graphitic carbon shell can act as an electron donor to the iron particles,thus promoting CO activation and expediting the formation of Fe5C2,which is the key factor for obtaining high C5–C11 selectivity.展开更多
A series of Ni/SBA-15 catalysts with 5wt% to 15wt% Ni content as well as a series of 12.5%Ni/Cu/SBA-15 catalysts with 1% to 10% copper content were prepared by the impregnation method. The catalytic performance for pa...A series of Ni/SBA-15 catalysts with 5wt% to 15wt% Ni content as well as a series of 12.5%Ni/Cu/SBA-15 catalysts with 1% to 10% copper content were prepared by the impregnation method. The catalytic performance for partial oxidation of methane was investigated in a continuous flow microreactor under atmospheric pressure. The textural and chemical properties of the catalysts were characterized by XRD, TEM, BET and Hz-TPR techniques. The results indicated that the catalysts modified with Cu promoter showed better performance than those without modification. For the 12.5%Ni/2.5%/Cu/SBA-15 catalyst, at 850 ℃ the conversion of CH4 reached 97.9% and the selectivity of CO and H2 reached 98.0% and 96.0%, respectively. In XRD patterns of the Ni/Cu/SBA-15 catalyst with 7.5 to 10% Cu contents there were CuO characteristic peaks beside NiO characteristic peaks. The mesoporous structure of SBA-15 was retained in all of the catalysts. TPR analysis of the catalysts revealed that a strong interaction between Ni, Cu promoter and SBA-15 support may be existed. This interaction enhanced significantly the redox properties of the catalysts resulting in the higher catalytic activity.展开更多
A series of Ni/SBA-15 catalysts with Ni contents from 7.5 wt% to 15 wt% were prepared by impregnation method.The effect of O2 and H2O on the combined reforming of the simulated biogas to syngas was investigated in a c...A series of Ni/SBA-15 catalysts with Ni contents from 7.5 wt% to 15 wt% were prepared by impregnation method.The effect of O2 and H2O on the combined reforming of the simulated biogas to syngas was investigated in a continuous flow fixed-bed micro-reactor.The stability of the catalyst was tested at 800 ?C.The results indicated that 10wt%Ni/SBA-15 catalyst exhibited the highest catalytic activities for the combined reforming of the simulated biogas to syngas.Under the reaction conditions of the feed gas molar ratios CH4/CO2/O2/H2O = 2/1/0.6/0.6,GHSV = 24000 ml·gcat^-1·h^-1 and the reaction temperature T = 800 ℃,the conversions of CH4 and CO2 were 92.8% and 76.3%,respectively,and the yields of CO and H2 were 99.0% and 82.0%,respectively.The catalytic activities of the catalyst did not decrease obviously after 100 h reaction time on stream.展开更多
Highly active and selective Ni-based catalysts for partial oxidation of methane (POM) to syngas (CO/H,) have been studied and developed. Spectroscopic characterization by XRD, XPS, EPR, etc. demonstrated that under th...Highly active and selective Ni-based catalysts for partial oxidation of methane (POM) to syngas (CO/H,) have been studied and developed. Spectroscopic characterization by XRD, XPS, EPR, etc. demonstrated that under the POM reaction conditions, the Ni-components of the catalysts investigated were reduced and enriched on the surface to form metallic Ni0-phase. A comparative study of the first series of transition-metals showed that only Ni and Co have a high POM activity and selectivity, whereas the others (including Mn, Fe, Cu, etc. ) give mainly complete combustion products, Co, and H2O. The results favor the following viewpoints: the PoM activity is related with the rapidly changeable valence transitionmetal sites, M0/M2+ (e. g. Ni0/Ni2+ ), on the surface of the functioning catalysts;the transition-metal sites in zero-valence state seem to be responsible for the activation and dehydrogenation of methane by homolytic splitting of its C-H bonds on these sites. and the nature of rapidly changeable valence of the active sties is requisite for activation and rapid conversion of dioxygen.展开更多
A series of Ni/SBA-15 catalysts with Ni contents ranging from 5 wt% to 15 wt%, as well as another series of 10%Ni/MgO/SBA-15 catalysts, in which the range of the MgO content was from 1 wt% to 7 wt%, were prepared, and...A series of Ni/SBA-15 catalysts with Ni contents ranging from 5 wt% to 15 wt%, as well as another series of 10%Ni/MgO/SBA-15 catalysts, in which the range of the MgO content was from 1 wt% to 7 wt%, were prepared, and their catalytic performances for the reaction of combined steam and carbon dioxide reforming of methane were investigated in a continuous flow microreactor. The structures of the catalysts were characterized using the XRD, H2-TPR and CO2-TPD techniques. The results indicated that the CO selectivity for this reaction was very close to 100%, and the H2/CO ratio of the product gas could be controlled by changing the H2O/CO2 molar ratio of the feed gas. The simultaneous and plentiful existing of steam and CO2 had a significant influence on the catalytic performance of the 10%Ni/SBA-15 catalyst without modification. After reacting at 850 °C for 120 h over this catalyst, the CH4 conversion dropped from 98% to 85%, and the CO2 conversion decreased from 86% to 53%. However, the 10%Ni/3%MgO/SBA-15 catalyst exhibited a much better catalytic performance, and after reacting for 620 h, the CO2 conversion over this catalyst dropped from 92% to around 77%, while the CH4 conversion was not decreased. Oxidation of the Ni0 species as well as carbon deposition during the reaction were the main reasons for the deactivation of the catalyst without modification. On the other hand, modification by the MgO promoter improved the dispersion of the Ni0 species, and enhanced the CO2 adsorption affinity which in turn depressed the occurring of carbon deposition, and thus retarded the deactivation process.展开更多
Co-precipitation method was selected for the preparation of Ni/Al_2O_3, Ni/ZrO_2 and Ni/CeO_2 catalysts, and their performances in methanation were investigated in this study. The structure and surface properties of t...Co-precipitation method was selected for the preparation of Ni/Al_2O_3, Ni/ZrO_2 and Ni/CeO_2 catalysts, and their performances in methanation were investigated in this study. The structure and surface properties of these catalysts were characterized by BET, XRD, H_2-TPD, TEM and H_2-TPR. The results showed that the catalytic activity at low temperature followed the order: Ni/Al_2O_3>Ni/ZrO_2>Ni/CeO_2. Ni/Al_2O_3 catalyst presented the best catalytic performance with the highest CH_4 selectivity of 94.5%. The characterization results indicated that the dispersion of the active component Ni was the main factor affecting the catalytic activity and the one with higher dispersion gave better performance.展开更多
The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction per...The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction performances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.展开更多
A series of Ni/SBA-15 catalysts with Ni contents from 5 wt%–20 wt%and CaO-12.5%Ni/SBA-15 catalysts with CaO contents from 1.4 wt%– 9.8 wt%have been prepared.The structure of the catalysts was characterized using X-r...A series of Ni/SBA-15 catalysts with Ni contents from 5 wt%–20 wt%and CaO-12.5%Ni/SBA-15 catalysts with CaO contents from 1.4 wt%– 9.8 wt%have been prepared.The structure of the catalysts was characterized using X-ray diffraction(XRD),N2 adsorption-desorption,transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).The performance of catalytic steam reforming of the poplar leaves to the hydrogen-rich syngas was tested in a fixed-bed reactor.The results indicate that the 7.0wt%CaO-12.5wt%Ni/SBA-15 catalyst exhibits the best performance for the catalytic steam reforming of poplar leaves to hydrogen-rich syngas.The ratio of H2:CO can reach ca 5:1 in the hydrogen-rich syngas.The yield of H2 can reach 273.30 mL/g(poplar leaves).In the CaO-Ni/SBA-15 catalyst,Ni active component mainly fills the role of catalytic steam reforming of the poplar leaves,and CaO active component mainly plays the role as water-gas shift and CO2 sorbent.展开更多
A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two refor...A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mol ratio of Ni:Cu:Mg:Ce:AI=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500℃ in the CSR, yield of 91.1% at 400℃ and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio- oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 ℃. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature.展开更多
Decomposition of methane in the presence of coprecipitated nickel-basedcatalysts to produce carbon fibers was investigated. The reaction was studied in the temperaturerange of 773 K to 1073 K. At 1023 K, the catalytic...Decomposition of methane in the presence of coprecipitated nickel-basedcatalysts to produce carbon fibers was investigated. The reaction was studied in the temperaturerange of 773 K to 1073 K. At 1023 K, the catalytic activities of three catalysts kept high at theinitial period and then decreased with the reaction time. The lifetimes of Ni-Cu-Al and Ni-La-Alcatalysts are longer than that of Ni-Al catalyst. With three catalysts, the yield of carbon fiberswas very low at 773 K. The yield of carbon fibers for Ni-La-Al catalyst was more than those forNi-Al and Ni-Cu-Al catalysts. For Ni-La-Al catalyst, the elevation of temperature from 873 K up to1073 K led gradually to an increase in the yield of carbon fibers. XRD studies on the Ni-La-Alcatalyst indicate that La_2NiO_4 was formed. The formation of La_2NiO_4 is responsible for theincrease in the catalytic lifetime and the yield of carbon fibers synthesized on Ni-La-Al at773-1073 K. Carbon fibers synthesized on Ni-Al catalyst are thin, long carbon nanotubes. There arebamboo-shaped carbon fibers synthesized on Ni-Cu-Al catalyst. Carbon fibers synthesized on Ni-La-Alcatalyst have large hollow core, thin wall and good graphitization.展开更多
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high...MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).展开更多
Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is report...Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively.展开更多
The selective hydrogenolysis of glycerol to 1,3-propanediol(1,3-PDO)is an attractive reaction due to the high demand for valorization of huge excess amounts of glycerol supply as well as the important application of 1...The selective hydrogenolysis of glycerol to 1,3-propanediol(1,3-PDO)is an attractive reaction due to the high demand for valorization of huge excess amounts of glycerol supply as well as the important application of 1,3-PDO in polyester industry.Nevertheless,the formation of 1,3-PDO is thermodynamically less favorable than 1,2-PDO,which necessitates the development of efficient catalysts to manipulate the reaction kinetics towards the 1,3-PDO formation.Among others,Pt-W based catalysts have shown promising activities and selectivities of 1,3-PDO although the reaction mechanism is not well addressed at the molecular level.In this short review,we have compared the performances of different Pt-W based catalysts and discussed the key factors influencing the activity and selectivity.Three possible reaction mechanisms have been discussed in terms of the synergy between Pt and WO_x and the origin of acid sites.Finally,the long-term stability of the Pt-W catalysts has been discussed.We hope this review will provide useful information for the development of more efficient catalysts for this important reaction.展开更多
基金supported by the Science and Technology Plan Project of Hebei Province of China(16273703D)the Fundamental Research Funds for the Central Universities(2015ZD24,2017XS123)~~
文摘Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.
基金This work was supported by the National Natural Science Foundation of China (No.51376185 and No.51106108), the National Basic Research Program of China (No.2012CB215304), the National High Technology Research and Development Program of China (No.2012AA101806), and the Natural Science Foundation of Guangdong Province (No.$2013010011612).
文摘A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found that the introduction of basic additives enhanced the basicities of catalyats and promoted the dispersities of Ni particles by strong interaction between Ni2+ and basic additives. Among the Ni based catalysts, 10%Ni/10%La203/ZrO2 showed the superior performance in sorbitol hydrogenolysis. The synergistic effect of Ni and La203 was proven to play an essential role in selective synthesis of EG and 1,2-PG. In the optimal reaction condition, the catalyst presented 100% sorbitol conversion and over 48% glycols (EG and 1,2-PG) yield. The kinetics study of polyols (sorbitol, xylitol and glycerol) hydrogenolysis showed that polyols with more hydroxyl number have higher activity and products distribution was final results of kinetic balance, which could give us some inspiration abeut how to change the products selectivity.
基金supported by the National Natural Science Fundation of China(U1361202,51276120)~~
文摘The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
文摘Among multitudinous metal‐oxide catalysts for the selective catalytic reduction of NOx with NH3(NH3‐SCR),Mn‐based catalysts have become very popular and developed rapidly in recent years because of its superior low‐temperature denitrification activity,mainly originating from multi‐valence of Mn.Most studies suggest that the catalytic activity of multi‐component oxides is superior to that of single‐component catalysts owing to the synergistic effect among the metallic elements in such materials,of which more attentions have been given to Ce as an additive owing to its powerful oxygen storage capacity,redox ability and its ready availability.As the core of SCR technology,the research points in catalyst development at the present stage of all researchers in countries mainly centralize on the optimization of active components,carriers,calcination temperature,calcination time and temperature‐raising procedure,giving little thought to the effects of the calcination atmosphere.In the present work,Ce‐modified Mn‐based catalysts were prepared by a simple impregnation method.The effects of the calcination atmosphere(N2,air or O2)on the performance of the resulting materials during NH3‐SCR and its causes of the differences were subsequently investigated and characterized using various analytical methods.Data obtained from X‐ray diffraction,thermogravimetry and temperature‐programmed reduction with hydrogen show that calcination under N2reduces both the degree of oxidation and crystallization of the MnOx.Scanning electron microscopy also demonstrates that the use of N2inhibits the growth of grains and increases the dispersion of the catalysts.In addition,the results of temperature‐programmed desorption with ammonia indicate that catalysts calcined under N2exhibit a greater quantity of acid sites.Finally,X‐ray photoelectron spectrometry and activity results demonstrate that MnOx in the lower valence states is more favorable for NH3‐SCR reactions.In conclusion,catalysts calcined under N2show superior performance during NH3‐SCR for NOx removal,allowing NO conversions up to94%at473K.
文摘Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.
基金Financial funds from the Chinese Natural Science Foundation(Project No.20473009)the Beijing Natural Science Foundation(Project No.8062023)+1 种基金the National Basic Research Program of China(Project No.2005CB221405)the National"863"Project of China(No.2006 AA10Z425)are gratefully acknowledged.
文摘A series of Ni/SBA-15 catalysts with Ni contents ranging from 5wt% to 20wt% as well as 10wt%Ni/10wt%CexZr1-xO2/SBA-15 (x=0, 0.5, 1) were prepared. The structures of the catalysts were characterized using XRD, TPR, TEM and BET techniques. The catalytic activities of the catalysts for steam reforming of methane were evaluated in a continuous flow microreactor. The results indicated that both the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts had good catalytic activities at at- mospheric pressure. The 10wt%Ni/SBA-15 catalyst exhibited excellent stability at 800 ℃ for time on stream of 740 h. After the reaction, carbon deposits were not formed on the surface of the catalyst. There existed a regular hexagonal mesoporous structure in the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts. The nickel species and the CexZr1-xO2 component were all confined in the SBA-15 mesopores. The CexZr1-xO2 could promote dispersion of the nickel species in the Ni/CexZr1-xO2/SBA-15 catalysts.
基金This work is supported by PetroChina Company Limited (No.030414-01)
文摘Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethylene oligomerization and polymerization reactions, activated by methylaluminoxane (MAO). The MAO-treated 1-3b presents an active catalytic center, which may oligomerize and polymerize ethylene to produce linear α-olefins and polyethylene, respectively. The molecular weight distributions of oligomers that are obtained are in good agreement with the Schulz-Flory rules for oligomers〉C4. The activity of 3b-MAO complex is 6.3×10^7 g/(molNi.h) at 50 ℃. The activities and molecular weight distributions of oligomers show significant reliance on the structures of catalyst precursors.
文摘Fischer‐Tropsch synthesis(FTS)has the potential to be a powerful strategy for producing liquid fuels from syngas if highly selective catalysts can be developed.Herein,a series of iron nanoparticle catalysts encapsulated by nitrogen‐doped graphitic carbon were prepared by a one‐step pyrolysis of a ferric L‐glutamic acid complex.The FeC‐800 catalyst pyrolyzed at 800°C showed excellent catalytic activity(239.4μmolCO gFe–1 s–1),high C5–C11 selectivity(49%),and good stability in FTS.The high dispersion of ferric species combined with a well‐encapsulated structure can effectively inhibit the migration of iron nanoparticles during the reaction process,which is beneficial for high activity and good stability.The nitrogen‐doped graphitic carbon shell can act as an electron donor to the iron particles,thus promoting CO activation and expediting the formation of Fe5C2,which is the key factor for obtaining high C5–C11 selectivity.
基金supported by the National Basic Research Program of China (Project No. 2005CB221405)the National "863" Project of China (No.2006AA10Z425)
文摘A series of Ni/SBA-15 catalysts with 5wt% to 15wt% Ni content as well as a series of 12.5%Ni/Cu/SBA-15 catalysts with 1% to 10% copper content were prepared by the impregnation method. The catalytic performance for partial oxidation of methane was investigated in a continuous flow microreactor under atmospheric pressure. The textural and chemical properties of the catalysts were characterized by XRD, TEM, BET and Hz-TPR techniques. The results indicated that the catalysts modified with Cu promoter showed better performance than those without modification. For the 12.5%Ni/2.5%/Cu/SBA-15 catalyst, at 850 ℃ the conversion of CH4 reached 97.9% and the selectivity of CO and H2 reached 98.0% and 96.0%, respectively. In XRD patterns of the Ni/Cu/SBA-15 catalyst with 7.5 to 10% Cu contents there were CuO characteristic peaks beside NiO characteristic peaks. The mesoporous structure of SBA-15 was retained in all of the catalysts. TPR analysis of the catalysts revealed that a strong interaction between Ni, Cu promoter and SBA-15 support may be existed. This interaction enhanced significantly the redox properties of the catalysts resulting in the higher catalytic activity.
基金supported by the National Basic Research Program of China(Project No.2005CB221405)the National "863" Project of China (No.2006AA10Z425)the Beijing Natural Science Foundation (Project No: 8062023)
文摘A series of Ni/SBA-15 catalysts with Ni contents from 7.5 wt% to 15 wt% were prepared by impregnation method.The effect of O2 and H2O on the combined reforming of the simulated biogas to syngas was investigated in a continuous flow fixed-bed micro-reactor.The stability of the catalyst was tested at 800 ?C.The results indicated that 10wt%Ni/SBA-15 catalyst exhibited the highest catalytic activities for the combined reforming of the simulated biogas to syngas.Under the reaction conditions of the feed gas molar ratios CH4/CO2/O2/H2O = 2/1/0.6/0.6,GHSV = 24000 ml·gcat^-1·h^-1 and the reaction temperature T = 800 ℃,the conversions of CH4 and CO2 were 92.8% and 76.3%,respectively,and the yields of CO and H2 were 99.0% and 82.0%,respectively.The catalytic activities of the catalyst did not decrease obviously after 100 h reaction time on stream.
文摘Highly active and selective Ni-based catalysts for partial oxidation of methane (POM) to syngas (CO/H,) have been studied and developed. Spectroscopic characterization by XRD, XPS, EPR, etc. demonstrated that under the POM reaction conditions, the Ni-components of the catalysts investigated were reduced and enriched on the surface to form metallic Ni0-phase. A comparative study of the first series of transition-metals showed that only Ni and Co have a high POM activity and selectivity, whereas the others (including Mn, Fe, Cu, etc. ) give mainly complete combustion products, Co, and H2O. The results favor the following viewpoints: the PoM activity is related with the rapidly changeable valence transitionmetal sites, M0/M2+ (e. g. Ni0/Ni2+ ), on the surface of the functioning catalysts;the transition-metal sites in zero-valence state seem to be responsible for the activation and dehydrogenation of methane by homolytic splitting of its C-H bonds on these sites. and the nature of rapidly changeable valence of the active sties is requisite for activation and rapid conversion of dioxygen.
基金the National Basic Research Program ofChina (Project No. 2005CB221405)the National "863" Project ofChina (No. 2006AA10Z425)the Beijing Natural Science Foun-dation (Project No: 8062023)
文摘A series of Ni/SBA-15 catalysts with Ni contents ranging from 5 wt% to 15 wt%, as well as another series of 10%Ni/MgO/SBA-15 catalysts, in which the range of the MgO content was from 1 wt% to 7 wt%, were prepared, and their catalytic performances for the reaction of combined steam and carbon dioxide reforming of methane were investigated in a continuous flow microreactor. The structures of the catalysts were characterized using the XRD, H2-TPR and CO2-TPD techniques. The results indicated that the CO selectivity for this reaction was very close to 100%, and the H2/CO ratio of the product gas could be controlled by changing the H2O/CO2 molar ratio of the feed gas. The simultaneous and plentiful existing of steam and CO2 had a significant influence on the catalytic performance of the 10%Ni/SBA-15 catalyst without modification. After reacting at 850 °C for 120 h over this catalyst, the CH4 conversion dropped from 98% to 85%, and the CO2 conversion decreased from 86% to 53%. However, the 10%Ni/3%MgO/SBA-15 catalyst exhibited a much better catalytic performance, and after reacting for 620 h, the CO2 conversion over this catalyst dropped from 92% to around 77%, while the CH4 conversion was not decreased. Oxidation of the Ni0 species as well as carbon deposition during the reaction were the main reasons for the deactivation of the catalyst without modification. On the other hand, modification by the MgO promoter improved the dispersion of the Ni0 species, and enhanced the CO2 adsorption affinity which in turn depressed the occurring of carbon deposition, and thus retarded the deactivation process.
基金financial support from the National Science and Technology Supporting Plan through contract (2015BAD15B06)the National Natural Science Foundation of China (51661145011)
文摘Co-precipitation method was selected for the preparation of Ni/Al_2O_3, Ni/ZrO_2 and Ni/CeO_2 catalysts, and their performances in methanation were investigated in this study. The structure and surface properties of these catalysts were characterized by BET, XRD, H_2-TPD, TEM and H_2-TPR. The results showed that the catalytic activity at low temperature followed the order: Ni/Al_2O_3>Ni/ZrO_2>Ni/CeO_2. Ni/Al_2O_3 catalyst presented the best catalytic performance with the highest CH_4 selectivity of 94.5%. The characterization results indicated that the dispersion of the active component Ni was the main factor affecting the catalytic activity and the one with higher dispersion gave better performance.
基金supported by the Jiangxi Provincial Department of Education
文摘The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction performances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.
基金supported by the National Basic Research Program of China(No.2005CB221405)the National"863"Project of China(No.2006AA10Z425)
文摘A series of Ni/SBA-15 catalysts with Ni contents from 5 wt%–20 wt%and CaO-12.5%Ni/SBA-15 catalysts with CaO contents from 1.4 wt%– 9.8 wt%have been prepared.The structure of the catalysts was characterized using X-ray diffraction(XRD),N2 adsorption-desorption,transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).The performance of catalytic steam reforming of the poplar leaves to the hydrogen-rich syngas was tested in a fixed-bed reactor.The results indicate that the 7.0wt%CaO-12.5wt%Ni/SBA-15 catalyst exhibits the best performance for the catalytic steam reforming of poplar leaves to hydrogen-rich syngas.The ratio of H2:CO can reach ca 5:1 in the hydrogen-rich syngas.The yield of H2 can reach 273.30 mL/g(poplar leaves).In the CaO-Ni/SBA-15 catalyst,Ni active component mainly fills the role of catalytic steam reforming of the poplar leaves,and CaO active component mainly plays the role as water-gas shift and CO2 sorbent.
文摘A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mol ratio of Ni:Cu:Mg:Ce:AI=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500℃ in the CSR, yield of 91.1% at 400℃ and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio- oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 ℃. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature.
基金Supported by the National Natural Science Foundation of China (No. 20263003)Natural Science Foundation of Jiangxi province (No. 0250009)
文摘Decomposition of methane in the presence of coprecipitated nickel-basedcatalysts to produce carbon fibers was investigated. The reaction was studied in the temperaturerange of 773 K to 1073 K. At 1023 K, the catalytic activities of three catalysts kept high at theinitial period and then decreased with the reaction time. The lifetimes of Ni-Cu-Al and Ni-La-Alcatalysts are longer than that of Ni-Al catalyst. With three catalysts, the yield of carbon fiberswas very low at 773 K. The yield of carbon fibers for Ni-La-Al catalyst was more than those forNi-Al and Ni-Cu-Al catalysts. For Ni-La-Al catalyst, the elevation of temperature from 873 K up to1073 K led gradually to an increase in the yield of carbon fibers. XRD studies on the Ni-La-Alcatalyst indicate that La_2NiO_4 was formed. The formation of La_2NiO_4 is responsible for theincrease in the catalytic lifetime and the yield of carbon fibers synthesized on Ni-La-Al at773-1073 K. Carbon fibers synthesized on Ni-Al catalyst are thin, long carbon nanotubes. There arebamboo-shaped carbon fibers synthesized on Ni-Cu-Al catalyst. Carbon fibers synthesized on Ni-La-Alcatalyst have large hollow core, thin wall and good graphitization.
基金supported by research programs of National Natural Science Foundation of China(52101274,51731002)Natural Science Foundation of Shandong Province(No.ZR2020QE011)Youth Top Talent Foundation of Yantai University(2219008).
文摘MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).
基金financially supported by National Natural Science Foundation of China (Nos. 12075032 and 12105021)Beijing Municipal Natural Science Foundation (Nos.8222055 and 2232061)+1 种基金Yunnan Police College Project (No. YJKF002)Beijing Institute of Graphic Communication Project (No. Ec202207)。
文摘Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively.
文摘The selective hydrogenolysis of glycerol to 1,3-propanediol(1,3-PDO)is an attractive reaction due to the high demand for valorization of huge excess amounts of glycerol supply as well as the important application of 1,3-PDO in polyester industry.Nevertheless,the formation of 1,3-PDO is thermodynamically less favorable than 1,2-PDO,which necessitates the development of efficient catalysts to manipulate the reaction kinetics towards the 1,3-PDO formation.Among others,Pt-W based catalysts have shown promising activities and selectivities of 1,3-PDO although the reaction mechanism is not well addressed at the molecular level.In this short review,we have compared the performances of different Pt-W based catalysts and discussed the key factors influencing the activity and selectivity.Three possible reaction mechanisms have been discussed in terms of the synergy between Pt and WO_x and the origin of acid sites.Finally,the long-term stability of the Pt-W catalysts has been discussed.We hope this review will provide useful information for the development of more efficient catalysts for this important reaction.