Ni–Ga alloy(Ni/Ga atomic ratio of 8),Ni3Ga and Ni5Ga3 intermetallic compounds(IMCs)catalysts were prepared from Ni–Mg-Al-Ga layered double hydroxides(LDHs)for the deoxygenation of methyl esters to hydrocarbons.In th...Ni–Ga alloy(Ni/Ga atomic ratio of 8),Ni3Ga and Ni5Ga3 intermetallic compounds(IMCs)catalysts were prepared from Ni–Mg-Al-Ga layered double hydroxides(LDHs)for the deoxygenation of methyl esters to hydrocarbons.In the alloy and IMCs,the presence of Ga reduced the surface Ni atom density,and the charge transfer from Ga to Ni increased the electron density of Ni.In the deoxygenation of methyl laurate,the Ni catalyst gave a complete hydrogenolysis of methyl laurate to CH4at 330°C and 3.0 MPa,while the presence of Ga promoted the HDO pathway and suppressed C–C bond hydrogenolysis and methanation.The Ni5Ga3 catalyst exhibited the best desired performance.Even at 400°C,it gave the yield of C11 and C12 hydrocarbons of ~99%,and the selectivity to CH4(SCH4) was only 2.4%.In the deoxygenation of methyl octanoate and methyl palmitate,the Ni5Ga3 catalyst also gave the yield of hydrocarbons above95%.Reactivity evaluation and methyl propionate-TPD and TPSR results indicate that the C–OCH3 bond instead of the O–CH3 one was cleaved on both Ni and bimetallic Ni–Ga catalysts.It is highlighted that methanol,derived from the C–OCH3 bond hydrogenolysis,mainly decomposed to CO and H2 on IMCs,while it was converted to methane on metallic Ni and alloy.It is of great significance that H2 could be yielded from the methyl ester itself.In short,the utilization of Ni–Ga IMCs can effectively reduce carbon loss and H2 consumption,all of which are ascribed to the geometric and electronic effects of Ga.展开更多
Ni/Si O_2 and bimetallic Ni_xGa/SiO_2 catalysts with different Ni/Ga atomic ratios(x = 10~2) were investigated for the selective hydrogenation of acetylene.It was found that Ni_xGa/SiO_2 showed higher selectivity to ...Ni/Si O_2 and bimetallic Ni_xGa/SiO_2 catalysts with different Ni/Ga atomic ratios(x = 10~2) were investigated for the selective hydrogenation of acetylene.It was found that Ni_xGa/SiO_2 showed higher selectivity to ethylene than Ni/Si O_2.This is attributed to the formation Ni-Ga alloy and Ni3 Ga intermetallic compound(IMC) where there was a charge transfer from Ga to Ni,which is favorable for reducing the adsorption strength and amount of ethylene on Ni atoms.As a result,the over-hydrogenation,the C–C bond hydrogenolysis and the polymerization were suppressed,and subsequently the selectivity to ethylene was enhanced.With the decrease of Ni/Ga atomic ratio,the activity and stability of the Ni_xGa/SiO_2 catalysts increased first and then decreased,while the ethylene selectivity tended to increase.Ni_5 Ga/SiO_2 exhibited the best performance.Under the conditions of 180 °C,0.1 MPa,and a reactant(1.0 vol% acetylene,5.0 vol% H_2 and 94 vol% N_2) with the space velocity of 36,000 m L h^(-1) g^(-1),the acetylene conversion maintained at 100% on Ni_5 Ga/SiO_2 during 120 h time on stream and the selectivity to ethylene was 75%~81%after reaction for 68 h.It was also found that the formation of Ni-Ga alloy and Ni_3 Ga IMC suppressed the incorporation of carbon to form NiCx,subsequently enhancing the catalyst stability.Additionally,with increasing the Ga content,the catalyst acid amount and strength tended to increase,which promoted the polymerization and carbon deposition and so the catalyst deactivation.展开更多
The results of mechanical testing and transmission electron microscopy on the ordered intermetallic Ll2 compounds1Zr3Al, Ni3Al, Ni3Si and Ni3Ge after irradiation with protons or heavy ions at high or low tem peratu re...The results of mechanical testing and transmission electron microscopy on the ordered intermetallic Ll2 compounds1Zr3Al, Ni3Al, Ni3Si and Ni3Ge after irradiation with protons or heavy ions at high or low tem peratu re are presented and discussed. Using a minjaturjzed disk-bend test. it was found that proton irradiation of Zr3Al. Ni3Al and Ni3Si raises their yield strength :a single test of Ni3Ge shows no effect on the fracture stress of this brittle intermetallic The Vickers microhardness of all four alloys is raised by proton irradiation. The irradiations cause all the alloys to disorder. the extent of which is dependent on irradiation temperature Microstructural defects are produced by the irradiations Some exhibit strain-field contrast under dynamic two-beam diffracting conditions. Other distinct defect clusters are imaged only in dark-field using su perlattice reflections, These latter defects are discussed in the context of current arnorphization models. The strength increase of Zr3Al, Ni3Al and Ni3Si is attributed to a combination of disordering and strengthening from defects. The lack of an effect of irradiation on the fracture stress of Ni3Ge. in which voids were observed, requires further experiments展开更多
The crystal structures and magnetic properties of novel Eu TrGa3-r (T=Pd, It, Rh) in termetallic compounds are investigated by using powder x-ray diffraction and magnetic measurements. EuTrGa3-r crystallizes in orth...The crystal structures and magnetic properties of novel Eu TrGa3-r (T=Pd, It, Rh) in termetallic compounds are investigated by using powder x-ray diffraction and magnetic measurements. EuTrGa3-r crystallizes in orthorhombic structure with space group of Cmcm and Z = 4. There are four kinds of nonequivalent 4c crystal positions in EuTrGaa-r unit cell, which are occupied by 4Eu, 4GaⅠ, 4(GaⅡ, T) and 4GaⅢ, respectively. EuTrGa3-r ex- hibits the complex magnetic states in low-temperature regime, with the three-, two- and one-antiferromagnetic transitions occurring for T=Ir, T=Rh and T=Pd, respectively. It might be due to the Kondo effect: a localized antiferromagnetic interaction of the isolated impurity spins with the surrounding conduction electrons at low-temperature regime.展开更多
It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of gr...It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of grains has its own domain and dislocation structure. There are mono- and polydomains with and without dislocations. The grains of the main phase of monoand polydomains without dislocations and polydomains with dislocations were formed by diffusion in the solid phase. In these conditions NiAl3 phase is located on the grain boundary of the main phase. The Ni2Al3 phase is located at the triple joints of the main phase.展开更多
The Ni_3B phase was formed when boron (0.5 at. pct B) was added to the intermetallic of sto- ichiometric and off-stoichiometric (Ni-24 at. pct Al) compounds. In the alloy of stoichiometric composition the particles o...The Ni_3B phase was formed when boron (0.5 at. pct B) was added to the intermetallic of sto- ichiometric and off-stoichiometric (Ni-24 at. pct Al) compounds. In the alloy of stoichiometric composition the particles of Ni_3B phase has the size around 0.1μm and is located on the grain boundary of the main phase. The decreasing of concentrations of Al in the ofF-stoichiometric alloy leads to increase in the degree of the long-range order parameter, increasing the concen- trations of boron in the solid solution and decreasing its localization on the grain boundary. Microalloying of boron leads to increasing in the fraction of grain monodomains with disloca- tions up to 0.7 in the alloy of the off-stoichiometric composition and up to 1 in the alloy of the stoichiometric composition. It was established the correlation between the degree of the concentration inhomogeneity, average density of the dislocations and the average long range-order parameter.展开更多
Synthesis of Ni/Al system intermetallic compound under the influence of pulsating electric current is researched.Reactions of Ni/Al system intermetallic compound are analyzed.It is found that solid-state reactions occ...Synthesis of Ni/Al system intermetallic compound under the influence of pulsating electric current is researched.Reactions of Ni/Al system intermetallic compound are analyzed.It is found that solid-state reactions occur at Ni/Al interface and the main way of reactions is atoms diffusing each other under the influence of a high-density pulsating electric current.展开更多
The microstructure of the single hot extruded and annealed Ni50Al20Fe30Y0.003 intermetallic compound alloys has been examined by means of high resolution electron microscopy (HREM). In these extruded and annealed allo...The microstructure of the single hot extruded and annealed Ni50Al20Fe30Y0.003 intermetallic compound alloys has been examined by means of high resolution electron microscopy (HREM). In these extruded and annealed alloys. the ductile phase is of a mixture of the disordered fcc γ matrix and or dered γ' precipitates. This fact well interprets the reason why the degree of annealing treatment can influence the strength and ductility of these alloys. The HREM observation revealed directly that there was some strain concentration at γ'-γ interfaces, due to the presence of more iron atoms in these two phases. The fixed orientation relationship between the γ phase and γ' precipitates was identified to be {001}γ||{00 }γ' and <100 >γ|| < 100 > γ'展开更多
We focused on the surface reinforcement of ligth weight casting alloys with Ni-AI intermetallic compounds by in-situ combustion reaction to improve the surface properties of non-ferrous casting components.In our previ...We focused on the surface reinforcement of ligth weight casting alloys with Ni-AI intermetallic compounds by in-situ combustion reaction to improve the surface properties of non-ferrous casting components.In our previous works,green compact of elemental Ni and Al powders were reacted to form Ni-3Al intermetallic compound by SHS (Self-propagating high temperature synthesis) reaction with the heat of molten Al alloy and simultaneously bonded with Al casting alloy.But some defects such as tiny cracks and porosities were remained in the reacted compact.So we applied pressure to prevent thermal cracks and fill up the pores with liquid Al alloy by squeeze casting process.The compressed Al alloy bonded with the Ni-3Al intermetallic compound was sectioned and observed by optical microscopy and scanning electron microscopy (SEM).The stoichiometric compositions of the intermetallics formed around the bonded interface and in the reacted compact were identified by energy dispersive spectroscopy (EDS) and electron probe micro analysis (EPMA). Si rich layer was formed on the Al alloy side near the bonded interface by the sequential solidification of Al alloy.The porosities observed in the reacted Ni-3Al compact were filled up with the liquid AI alloy.The Si particles from the molten Al alloy were detected in the pores of reacted Ni-3Al intermetallic compact.The Al casting alloy and Ni-3Al intermetallic compound were joined very soundly by applying pressure to the liquid Al alloy.展开更多
The well-densified Ni3Al-0.5B-5Cr alloy was fabricated by self-propagation high-temperature synthesis and extrusion technique. Microstructure examination shows that the synthesized alloy has fine microstructure and co...The well-densified Ni3Al-0.5B-5Cr alloy was fabricated by self-propagation high-temperature synthesis and extrusion technique. Microstructure examination shows that the synthesized alloy has fine microstructure and contains Ni3Al, Al2O3, Ni3B and Cr3Ni2 phases. Moreover, the self-propagation high-temperature synthesis and extrusion lead to great deformation and recrystallization in the alloy, which helps to refine the microstructure and weaken the misorientation. In addition, the subsequent extrusion procedure redistributes the Al2O3 particles and eliminates the γ-Ni phase. Compared with the alloy synthesized without extrusion, the Ni3Al-0.5B-5Cr alloy fabricated by self-propagation high-temperature synthesis and extrusion has better room temperature mechanical properties, which should be ascribed to the microstructure evolution.展开更多
Four types of steel sheets containing 0.04%, 0.09%, 0. 14% and 0.36% Si, respectively, were electrodeposited with a nickel layer of 3 tam in thickness and then galvanized in molten Zn at 450℃ for various periods of t...Four types of steel sheets containing 0.04%, 0.09%, 0. 14% and 0.36% Si, respectively, were electrodeposited with a nickel layer of 3 tam in thickness and then galvanized in molten Zn at 450℃ for various periods of time. The formation and growth of intermetallic compound layers on the surface of the samples were investigated by SEM and EDS. The experimental results show that the method of Ni-electrodeposited pretreatment can distinctively restrain the over-growth of the galvanized coatings of reactive steels and get eligible coatings with a proper thickness, bright appearance and strong adherence. EDS results indicate that a series of Ni-Zn intermetallic compounds γ′, γ and δ, are first formed on the surface of the samples. With a prolonged immersion time, the F2-Fe-Zn-Ni and δ-Fe-Zn are formed accompanied by the gradual disappearance of γ′, γ and δ2 layer. After a longer immersion time, the lumpy ζ- Fe-Zn occurs between δ and liquid Zn and the F-Fe-Zn does between steel substrate and δ. Subsequently, ζ is in the form of a continuous and compact layer. The method of Ni-electrodeposited pretreatment changes the formation of Fe-Zn intermetallic compounds, which delay the growth of lumpy (and promote the growth of compact δ. Consequently, the abnormal growth of reactive steels is eliminated.展开更多
基金support from the National Natural Science Foundation of China(Nos.21576193 and 21176177)。
文摘Ni–Ga alloy(Ni/Ga atomic ratio of 8),Ni3Ga and Ni5Ga3 intermetallic compounds(IMCs)catalysts were prepared from Ni–Mg-Al-Ga layered double hydroxides(LDHs)for the deoxygenation of methyl esters to hydrocarbons.In the alloy and IMCs,the presence of Ga reduced the surface Ni atom density,and the charge transfer from Ga to Ni increased the electron density of Ni.In the deoxygenation of methyl laurate,the Ni catalyst gave a complete hydrogenolysis of methyl laurate to CH4at 330°C and 3.0 MPa,while the presence of Ga promoted the HDO pathway and suppressed C–C bond hydrogenolysis and methanation.The Ni5Ga3 catalyst exhibited the best desired performance.Even at 400°C,it gave the yield of C11 and C12 hydrocarbons of ~99%,and the selectivity to CH4(SCH4) was only 2.4%.In the deoxygenation of methyl octanoate and methyl palmitate,the Ni5Ga3 catalyst also gave the yield of hydrocarbons above95%.Reactivity evaluation and methyl propionate-TPD and TPSR results indicate that the C–OCH3 bond instead of the O–CH3 one was cleaved on both Ni and bimetallic Ni–Ga catalysts.It is highlighted that methanol,derived from the C–OCH3 bond hydrogenolysis,mainly decomposed to CO and H2 on IMCs,while it was converted to methane on metallic Ni and alloy.It is of great significance that H2 could be yielded from the methyl ester itself.In short,the utilization of Ni–Ga IMCs can effectively reduce carbon loss and H2 consumption,all of which are ascribed to the geometric and electronic effects of Ga.
基金supported by the National Natural Science Foundation of China (21576193)
文摘Ni/Si O_2 and bimetallic Ni_xGa/SiO_2 catalysts with different Ni/Ga atomic ratios(x = 10~2) were investigated for the selective hydrogenation of acetylene.It was found that Ni_xGa/SiO_2 showed higher selectivity to ethylene than Ni/Si O_2.This is attributed to the formation Ni-Ga alloy and Ni3 Ga intermetallic compound(IMC) where there was a charge transfer from Ga to Ni,which is favorable for reducing the adsorption strength and amount of ethylene on Ni atoms.As a result,the over-hydrogenation,the C–C bond hydrogenolysis and the polymerization were suppressed,and subsequently the selectivity to ethylene was enhanced.With the decrease of Ni/Ga atomic ratio,the activity and stability of the Ni_xGa/SiO_2 catalysts increased first and then decreased,while the ethylene selectivity tended to increase.Ni_5 Ga/SiO_2 exhibited the best performance.Under the conditions of 180 °C,0.1 MPa,and a reactant(1.0 vol% acetylene,5.0 vol% H_2 and 94 vol% N_2) with the space velocity of 36,000 m L h^(-1) g^(-1),the acetylene conversion maintained at 100% on Ni_5 Ga/SiO_2 during 120 h time on stream and the selectivity to ethylene was 75%~81%after reaction for 68 h.It was also found that the formation of Ni-Ga alloy and Ni_3 Ga IMC suppressed the incorporation of carbon to form NiCx,subsequently enhancing the catalyst stability.Additionally,with increasing the Ga content,the catalyst acid amount and strength tended to increase,which promoted the polymerization and carbon deposition and so the catalyst deactivation.
文摘The results of mechanical testing and transmission electron microscopy on the ordered intermetallic Ll2 compounds1Zr3Al, Ni3Al, Ni3Si and Ni3Ge after irradiation with protons or heavy ions at high or low tem peratu re are presented and discussed. Using a minjaturjzed disk-bend test. it was found that proton irradiation of Zr3Al. Ni3Al and Ni3Si raises their yield strength :a single test of Ni3Ge shows no effect on the fracture stress of this brittle intermetallic The Vickers microhardness of all four alloys is raised by proton irradiation. The irradiations cause all the alloys to disorder. the extent of which is dependent on irradiation temperature Microstructural defects are produced by the irradiations Some exhibit strain-field contrast under dynamic two-beam diffracting conditions. Other distinct defect clusters are imaged only in dark-field using su perlattice reflections, These latter defects are discussed in the context of current arnorphization models. The strength increase of Zr3Al, Ni3Al and Ni3Si is attributed to a combination of disordering and strengthening from defects. The lack of an effect of irradiation on the fracture stress of Ni3Ge. in which voids were observed, requires further experiments
基金Supported by the National Natural Science Foundation of China under Grant No 11274110
文摘The crystal structures and magnetic properties of novel Eu TrGa3-r (T=Pd, It, Rh) in termetallic compounds are investigated by using powder x-ray diffraction and magnetic measurements. EuTrGa3-r crystallizes in orthorhombic structure with space group of Cmcm and Z = 4. There are four kinds of nonequivalent 4c crystal positions in EuTrGaa-r unit cell, which are occupied by 4Eu, 4GaⅠ, 4(GaⅡ, T) and 4GaⅢ, respectively. EuTrGa3-r ex- hibits the complex magnetic states in low-temperature regime, with the three-, two- and one-antiferromagnetic transitions occurring for T=Ir, T=Rh and T=Pd, respectively. It might be due to the Kondo effect: a localized antiferromagnetic interaction of the isolated impurity spins with the surrounding conduction electrons at low-temperature regime.
文摘It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of grains has its own domain and dislocation structure. There are mono- and polydomains with and without dislocations. The grains of the main phase of monoand polydomains without dislocations and polydomains with dislocations were formed by diffusion in the solid phase. In these conditions NiAl3 phase is located on the grain boundary of the main phase. The Ni2Al3 phase is located at the triple joints of the main phase.
文摘The Ni_3B phase was formed when boron (0.5 at. pct B) was added to the intermetallic of sto- ichiometric and off-stoichiometric (Ni-24 at. pct Al) compounds. In the alloy of stoichiometric composition the particles of Ni_3B phase has the size around 0.1μm and is located on the grain boundary of the main phase. The decreasing of concentrations of Al in the ofF-stoichiometric alloy leads to increase in the degree of the long-range order parameter, increasing the concen- trations of boron in the solid solution and decreasing its localization on the grain boundary. Microalloying of boron leads to increasing in the fraction of grain monodomains with disloca- tions up to 0.7 in the alloy of the off-stoichiometric composition and up to 1 in the alloy of the stoichiometric composition. It was established the correlation between the degree of the concentration inhomogeneity, average density of the dislocations and the average long range-order parameter.
文摘Synthesis of Ni/Al system intermetallic compound under the influence of pulsating electric current is researched.Reactions of Ni/Al system intermetallic compound are analyzed.It is found that solid-state reactions occur at Ni/Al interface and the main way of reactions is atoms diffusing each other under the influence of a high-density pulsating electric current.
文摘The microstructure of the single hot extruded and annealed Ni50Al20Fe30Y0.003 intermetallic compound alloys has been examined by means of high resolution electron microscopy (HREM). In these extruded and annealed alloys. the ductile phase is of a mixture of the disordered fcc γ matrix and or dered γ' precipitates. This fact well interprets the reason why the degree of annealing treatment can influence the strength and ductility of these alloys. The HREM observation revealed directly that there was some strain concentration at γ'-γ interfaces, due to the presence of more iron atoms in these two phases. The fixed orientation relationship between the γ phase and γ' precipitates was identified to be {001}γ||{00 }γ' and <100 >γ|| < 100 > γ'
文摘We focused on the surface reinforcement of ligth weight casting alloys with Ni-AI intermetallic compounds by in-situ combustion reaction to improve the surface properties of non-ferrous casting components.In our previous works,green compact of elemental Ni and Al powders were reacted to form Ni-3Al intermetallic compound by SHS (Self-propagating high temperature synthesis) reaction with the heat of molten Al alloy and simultaneously bonded with Al casting alloy.But some defects such as tiny cracks and porosities were remained in the reacted compact.So we applied pressure to prevent thermal cracks and fill up the pores with liquid Al alloy by squeeze casting process.The compressed Al alloy bonded with the Ni-3Al intermetallic compound was sectioned and observed by optical microscopy and scanning electron microscopy (SEM).The stoichiometric compositions of the intermetallics formed around the bonded interface and in the reacted compact were identified by energy dispersive spectroscopy (EDS) and electron probe micro analysis (EPMA). Si rich layer was formed on the Al alloy side near the bonded interface by the sequential solidification of Al alloy.The porosities observed in the reacted Ni-3Al compact were filled up with the liquid AI alloy.The Si particles from the molten Al alloy were detected in the pores of reacted Ni-3Al intermetallic compact.The Al casting alloy and Ni-3Al intermetallic compound were joined very soundly by applying pressure to the liquid Al alloy.
基金Project (2012CB933600) supported by the National Basic Research Program of ChinaProject (2011AA030104) supported by the National High-tech Research and Development Program of ChinaProject (JC200903170498A) supported by the Science and Technology Research Foundation of Shenzhen Bureau of Science and Technology & Information, China
文摘The well-densified Ni3Al-0.5B-5Cr alloy was fabricated by self-propagation high-temperature synthesis and extrusion technique. Microstructure examination shows that the synthesized alloy has fine microstructure and contains Ni3Al, Al2O3, Ni3B and Cr3Ni2 phases. Moreover, the self-propagation high-temperature synthesis and extrusion lead to great deformation and recrystallization in the alloy, which helps to refine the microstructure and weaken the misorientation. In addition, the subsequent extrusion procedure redistributes the Al2O3 particles and eliminates the γ-Ni phase. Compared with the alloy synthesized without extrusion, the Ni3Al-0.5B-5Cr alloy fabricated by self-propagation high-temperature synthesis and extrusion has better room temperature mechanical properties, which should be ascribed to the microstructure evolution.
文摘Four types of steel sheets containing 0.04%, 0.09%, 0. 14% and 0.36% Si, respectively, were electrodeposited with a nickel layer of 3 tam in thickness and then galvanized in molten Zn at 450℃ for various periods of time. The formation and growth of intermetallic compound layers on the surface of the samples were investigated by SEM and EDS. The experimental results show that the method of Ni-electrodeposited pretreatment can distinctively restrain the over-growth of the galvanized coatings of reactive steels and get eligible coatings with a proper thickness, bright appearance and strong adherence. EDS results indicate that a series of Ni-Zn intermetallic compounds γ′, γ and δ, are first formed on the surface of the samples. With a prolonged immersion time, the F2-Fe-Zn-Ni and δ-Fe-Zn are formed accompanied by the gradual disappearance of γ′, γ and δ2 layer. After a longer immersion time, the lumpy ζ- Fe-Zn occurs between δ and liquid Zn and the F-Fe-Zn does between steel substrate and δ. Subsequently, ζ is in the form of a continuous and compact layer. The method of Ni-electrodeposited pretreatment changes the formation of Fe-Zn intermetallic compounds, which delay the growth of lumpy (and promote the growth of compact δ. Consequently, the abnormal growth of reactive steels is eliminated.