研究了硬质合金表面Ni P 纳米Ti(C,N)化学复合镀工艺以及热处理对复合镀层性能影响的规律。结果表-);2)较好的明:1)施镀工艺中各因素对镀速影响的显著性顺序是:温度→pH值→纳米Ti(C,N)加入量→χ(Ni2+ H2PO2施镀工艺为:28g L氯化镍、... 研究了硬质合金表面Ni P 纳米Ti(C,N)化学复合镀工艺以及热处理对复合镀层性能影响的规律。结果表-);2)较好的明:1)施镀工艺中各因素对镀速影响的显著性顺序是:温度→pH值→纳米Ti(C,N)加入量→χ(Ni2+ H2PO2施镀工艺为:28g L氯化镍、25.76g L次亚磷酸钠,50g L氯化铵、45g L柠檬酸钠,0.001g LPbCl2,6g L纳米Ti(C,N),pH=10,温度为80℃。3)Ni P 纳米Ti(C,N)复合镀层较优的热处理工艺为:在400℃保温150min。采用所推荐的施镀和热处理工艺,获得了硬度是硬质合金基体硬度的2.16倍的Ni P 纳米Ti(C,N)复合镀层。并对以上结果产生的原因进行了简单讨论。展开更多
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bo...After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.展开更多
The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study ...The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.展开更多
Ni-P-SiC_(P) coatings were deposited on 42CrMo steel by electroless plating.The surface morphologies and phase structures of the Ni-P-SiC_(P) coatings processed under different SiC_(P) concentrations at different heat...Ni-P-SiC_(P) coatings were deposited on 42CrMo steel by electroless plating.The surface morphologies and phase structures of the Ni-P-SiC_(P) coatings processed under different SiC_(P) concentrations at different heat treatment temperatures were analyzed.The microhardness,corrosion resistance,and wear resistance of the Ni-P-SiC_(P) coatings were studied.Results show that Ni-P-SiC_(P) coatings exhibit cauliflower-like morphology.Increasing the SiC_(P) concentration can reduce the size of cellular structure.The microhardness and corrosion resistance are initially increased and then decreased with the increase in SiC_(P) concentration.The maximum microhardness and corrosion potential are 7379 MPa and−0.363 V,respectively,when the SiC_(P) concentration is 5 g/L.The Ni-P-SiC_(P) coatings exhibit an amorphous structure,and the width of the diffuse diffraction peak becomes narrower with the increase in SiC_(P) concentration.It is suggested that SiC_(P) inhibits the deposition of P and promotes the microcrystalline transformation.After heat treatment at 350℃,the Ni-P-SiC_(P) coatings are crystallized,resulting in the precipitation of Ni3P phase.Heat treatment at 400℃ for 1 h maximizes the structure.The synergistic effect of the Ni3P precipitate phase and SiC_(P) dispersion phase promotes the densification of the cellular structure,leading to the optimal microhardness(13828 MPa),optimal corrosion resistance(−0.277 V),and excellent wear resistance.The wear mechanism is dominated by micro-cutting abrasive wear with slight adhesive and oxidative wear.展开更多
文摘 研究了硬质合金表面Ni P 纳米Ti(C,N)化学复合镀工艺以及热处理对复合镀层性能影响的规律。结果表-);2)较好的明:1)施镀工艺中各因素对镀速影响的显著性顺序是:温度→pH值→纳米Ti(C,N)加入量→χ(Ni2+ H2PO2施镀工艺为:28g L氯化镍、25.76g L次亚磷酸钠,50g L氯化铵、45g L柠檬酸钠,0.001g LPbCl2,6g L纳米Ti(C,N),pH=10,温度为80℃。3)Ni P 纳米Ti(C,N)复合镀层较优的热处理工艺为:在400℃保温150min。采用所推荐的施镀和热处理工艺,获得了硬度是硬质合金基体硬度的2.16倍的Ni P 纳米Ti(C,N)复合镀层。并对以上结果产生的原因进行了简单讨论。
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
基金Project(2014DFA50860)supported by International Science&Technology Cooperation Program of China
文摘After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.
文摘The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.
基金Science Research Project of Handan Bureau of Science and Technology(21422075242)。
文摘Ni-P-SiC_(P) coatings were deposited on 42CrMo steel by electroless plating.The surface morphologies and phase structures of the Ni-P-SiC_(P) coatings processed under different SiC_(P) concentrations at different heat treatment temperatures were analyzed.The microhardness,corrosion resistance,and wear resistance of the Ni-P-SiC_(P) coatings were studied.Results show that Ni-P-SiC_(P) coatings exhibit cauliflower-like morphology.Increasing the SiC_(P) concentration can reduce the size of cellular structure.The microhardness and corrosion resistance are initially increased and then decreased with the increase in SiC_(P) concentration.The maximum microhardness and corrosion potential are 7379 MPa and−0.363 V,respectively,when the SiC_(P) concentration is 5 g/L.The Ni-P-SiC_(P) coatings exhibit an amorphous structure,and the width of the diffuse diffraction peak becomes narrower with the increase in SiC_(P) concentration.It is suggested that SiC_(P) inhibits the deposition of P and promotes the microcrystalline transformation.After heat treatment at 350℃,the Ni-P-SiC_(P) coatings are crystallized,resulting in the precipitation of Ni3P phase.Heat treatment at 400℃ for 1 h maximizes the structure.The synergistic effect of the Ni3P precipitate phase and SiC_(P) dispersion phase promotes the densification of the cellular structure,leading to the optimal microhardness(13828 MPa),optimal corrosion resistance(−0.277 V),and excellent wear resistance.The wear mechanism is dominated by micro-cutting abrasive wear with slight adhesive and oxidative wear.