Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as ...Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications.展开更多
The liquid-phase hydrogenation of butyronitrile to saturated amines was studied on silica- supported Ni catalysts prepared by either incipient-wetness impregnation (Ni/SiO2-I) or ammonia (Ni/SiO2-A) methods. A Ni/SiO2...The liquid-phase hydrogenation of butyronitrile to saturated amines was studied on silica- supported Ni catalysts prepared by either incipient-wetness impregnation (Ni/SiO2-I) or ammonia (Ni/SiO2-A) methods. A Ni/SiO2-Al2O3-I sample was also used. Ni/SiO2-I was a non-acidic catalyst containing large Ni^0 particles of low interaction with the support, while Ni/SiO2-A was an acidic catalyst due to the presence of Ni^2+ species in Ni phyllosilicates of low reducibility. Ni/SiO2-I formed essentially butylamine (80%), and dibutylamine as the only byproduct. In contrast, Ni/SiO2-A yielded a mixture of dibutylamine (49%) and tributylamine (45%), being the formation of butylamine almost completely suppressed. The selective formation of secondary and tertiary amines on Ni/SiO2-A was explained by considering that butylamine is not release to the liquid phase during the reaction because it is strongly adsorbed on surface acid sites contiguous to Ni^0 atoms, thereby favoring the butylimine/butylamine condensation to higher amines between adsorbed species.展开更多
Isooctane is a promising gasoline additive that could be produced by dimerization of isobutene(IB) with subsequent hydrogenation.In this work,the dimerization of IB has been carried out in a batch reactor over a tempe...Isooctane is a promising gasoline additive that could be produced by dimerization of isobutene(IB) with subsequent hydrogenation.In this work,the dimerization of IB has been carried out in a batch reactor over a temperature range of 338-383 K in the presence of laboratory prepared Ni/Al_2O_3 as a catalyst and n-pentane as solvent.The influence of various parameters such as temperature,catalyst loading and initial concentration of IB was examined.A Langmuir-Hinshelwood kinetic model of IB dimerization was established and the parameters were estimated on the basis of the measured data.The feasibility of oligomerization of IB based on the reactive distillation was simulated in ASPEN PLUS using the kinetics developed.The simulation results showed that the catalyst of Ni/Al_2O_3 had higher selectivity to diisobutene(DIB) and slightly lower conversion of IB than ion exchange resin in the absence of polar substances.展开更多
基金supported by the National Natural Science Foundation of China (51672089)the Industry and Research Collaborative Innovation Major Projects of Guangzhou (201508020098)+1 种基金the State Key Laboratory of Advanced Technology for Material Synthesis and Processing (Wuhan University of Technology) (2015-KF-7)the Hunan Key Laboratory of Applied Environmental Photocatalysis (Changsha University) (CCSU-XT-04)~~
文摘Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications.
基金the Universidad Nacional del Litoral (UNL)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT ), Argentina, for the financial support of this work
文摘The liquid-phase hydrogenation of butyronitrile to saturated amines was studied on silica- supported Ni catalysts prepared by either incipient-wetness impregnation (Ni/SiO2-I) or ammonia (Ni/SiO2-A) methods. A Ni/SiO2-Al2O3-I sample was also used. Ni/SiO2-I was a non-acidic catalyst containing large Ni^0 particles of low interaction with the support, while Ni/SiO2-A was an acidic catalyst due to the presence of Ni^2+ species in Ni phyllosilicates of low reducibility. Ni/SiO2-I formed essentially butylamine (80%), and dibutylamine as the only byproduct. In contrast, Ni/SiO2-A yielded a mixture of dibutylamine (49%) and tributylamine (45%), being the formation of butylamine almost completely suppressed. The selective formation of secondary and tertiary amines on Ni/SiO2-A was explained by considering that butylamine is not release to the liquid phase during the reaction because it is strongly adsorbed on surface acid sites contiguous to Ni^0 atoms, thereby favoring the butylimine/butylamine condensation to higher amines between adsorbed species.
基金Supported by the State key Development Program for Basic Research of China(2012CB720502)the National High Technology Research and Development(2012AA040306)+1 种基金the National Natural Science Foundation of China(21076074)the Shanghai Pujiang Talents Program(10PJ1402400)
文摘Isooctane is a promising gasoline additive that could be produced by dimerization of isobutene(IB) with subsequent hydrogenation.In this work,the dimerization of IB has been carried out in a batch reactor over a temperature range of 338-383 K in the presence of laboratory prepared Ni/Al_2O_3 as a catalyst and n-pentane as solvent.The influence of various parameters such as temperature,catalyst loading and initial concentration of IB was examined.A Langmuir-Hinshelwood kinetic model of IB dimerization was established and the parameters were estimated on the basis of the measured data.The feasibility of oligomerization of IB based on the reactive distillation was simulated in ASPEN PLUS using the kinetics developed.The simulation results showed that the catalyst of Ni/Al_2O_3 had higher selectivity to diisobutene(DIB) and slightly lower conversion of IB than ion exchange resin in the absence of polar substances.