The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/...The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/Co3O4 nanoparticles coupled with N-doped carbon hybrids(Ni/Co3O4@NC) were synthesized via a facile impregnation-calcination method as efficient electrocatalysts for OER in alkaline media. Notably, the impregnation of the polymer with Ni and Co ions in the first step ensured the homogeneous distribution of metals, thus guaranteeing the subsequent in situ calcination reaction, which produced well-dispersed Ni and Co3O4 nanoparticles. Moreover, the N-doped carbon matrix formed at high temperatures could effectively prevent the aggregation and coalescence, and regulate the electronic configuration of active species. Benefiting from the synergistic effect between the Ni, Co3O4, and NC species, the obtained Ni/Co3O4@NC hybrids exhibited enhanced OER activities and remarkable stability in an alkaline solution with a smaller overpotential of 350 m V to afford 10 m A cm-2, lower Tafel slope of 52.27 m V dec-1, smaller charge-transfer resistance, and higher double-layer capacitance of 25.53 m F cm-2 compared to those of unary Co3O4@NC or Ni@NC metal hybrids. Therefore, this paper presents a facile strategy for designing other heteroatom-doped oxides coupled with ideal carbon materials as electrocatalysts for the OER.展开更多
Cost-efficient electrocatalysts composed of earth-abundant elements are highly desired for enhanced oxygen evolution reaction (OER).As a promising candidate,metallic Co4N already demonstrated electrocatalytic performa...Cost-efficient electrocatalysts composed of earth-abundant elements are highly desired for enhanced oxygen evolution reaction (OER).As a promising candidate,metallic Co4N already demonstrated electrocatalytic performance relying on specific nanostructures and electronic configurations.Herein,nickel was introduced as the dopant into one-dimensional (1D) hierarchical Co4N structures,achieving effective electronic regulation of Co4N toward high OER performance.The amount of Co3+increased after Ni-doping,and the in-situ formed surface oxyhydroxide during OER enhanced the electrocatalytic kinetics.Meanwhile,the 1D hierarchical structure further promoted the performances of Co4N owing to the high electrical conductivity and abundant activesites on the rough surface.As expected,the optimal Ni-doped Co4N with a Ni/Co molar ratio of 0.25 provides a small overpotential of 233 mV at a current density of 10 mA cm^(-2),with a low Tafel slope of 61 mV dec^(-1),and high long-term stability in 1.0 mol L^(-1)KOH.Following these results,the enhancement by doping the Co4N nanowire bundles with Fe and Cu was further evidenced for the OER.展开更多
文摘The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/Co3O4 nanoparticles coupled with N-doped carbon hybrids(Ni/Co3O4@NC) were synthesized via a facile impregnation-calcination method as efficient electrocatalysts for OER in alkaline media. Notably, the impregnation of the polymer with Ni and Co ions in the first step ensured the homogeneous distribution of metals, thus guaranteeing the subsequent in situ calcination reaction, which produced well-dispersed Ni and Co3O4 nanoparticles. Moreover, the N-doped carbon matrix formed at high temperatures could effectively prevent the aggregation and coalescence, and regulate the electronic configuration of active species. Benefiting from the synergistic effect between the Ni, Co3O4, and NC species, the obtained Ni/Co3O4@NC hybrids exhibited enhanced OER activities and remarkable stability in an alkaline solution with a smaller overpotential of 350 m V to afford 10 m A cm-2, lower Tafel slope of 52.27 m V dec-1, smaller charge-transfer resistance, and higher double-layer capacitance of 25.53 m F cm-2 compared to those of unary Co3O4@NC or Ni@NC metal hybrids. Therefore, this paper presents a facile strategy for designing other heteroatom-doped oxides coupled with ideal carbon materials as electrocatalysts for the OER.
基金financial support from China Postdoctoral Science Foundation (2020M673056)the National Key Research and Development Program of China (2018YFA0209402)the National Natural Science Foundation of China (21773093)。
文摘Cost-efficient electrocatalysts composed of earth-abundant elements are highly desired for enhanced oxygen evolution reaction (OER).As a promising candidate,metallic Co4N already demonstrated electrocatalytic performance relying on specific nanostructures and electronic configurations.Herein,nickel was introduced as the dopant into one-dimensional (1D) hierarchical Co4N structures,achieving effective electronic regulation of Co4N toward high OER performance.The amount of Co3+increased after Ni-doping,and the in-situ formed surface oxyhydroxide during OER enhanced the electrocatalytic kinetics.Meanwhile,the 1D hierarchical structure further promoted the performances of Co4N owing to the high electrical conductivity and abundant activesites on the rough surface.As expected,the optimal Ni-doped Co4N with a Ni/Co molar ratio of 0.25 provides a small overpotential of 233 mV at a current density of 10 mA cm^(-2),with a low Tafel slope of 61 mV dec^(-1),and high long-term stability in 1.0 mol L^(-1)KOH.Following these results,the enhancement by doping the Co4N nanowire bundles with Fe and Cu was further evidenced for the OER.