LiNi1-xCoxO2 with x=0.1, 0.2, 0.3, 0.5 and 1 were prepared by co-precipitation of mixed solution of Ni- and Co-salt in NaOH. The structure of LiNi1-xCoxO2 was analyzed by XRD. The results show that the unit cell const...LiNi1-xCoxO2 with x=0.1, 0.2, 0.3, 0.5 and 1 were prepared by co-precipitation of mixed solution of Ni- and Co-salt in NaOH. The structure of LiNi1-xCoxO2 was analyzed by XRD. The results show that the unit cell constants a and c decrease as the Co content increases. Although the change of unit cell constants can reflect the substitution of Co ions with Ni ions in the lab, the splits of the pairs of (006), (102) and (108), (110) in the XRD pattern can not reflect the presence of Ni2+ in the lithium site.展开更多
Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composi...Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.展开更多
文摘LiNi1-xCoxO2 with x=0.1, 0.2, 0.3, 0.5 and 1 were prepared by co-precipitation of mixed solution of Ni- and Co-salt in NaOH. The structure of LiNi1-xCoxO2 was analyzed by XRD. The results show that the unit cell constants a and c decrease as the Co content increases. Although the change of unit cell constants can reflect the substitution of Co ions with Ni ions in the lab, the splits of the pairs of (006), (102) and (108), (110) in the XRD pattern can not reflect the presence of Ni2+ in the lithium site.
基金Projects(5117916851308310)supported by the National Natural Science Foundation of China+1 种基金Project(LQ13E080007)supported by Zhejiang Provincial Natural Science Foundation,ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Jiangsu Province,China
文摘Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.