研究了铸态Cu-1.0Ni-0.2P合金在750、800、850、900、950℃,0.1、1.0、10.0 s-1应变率下的高温变形行为,获得其热压缩过程的流变应力-应变曲线,构建基于Arrhenius方程的本构模型和热加工图,阐明了变形温度和应变率对铸态Cu-1.0Ni-0.2P...研究了铸态Cu-1.0Ni-0.2P合金在750、800、850、900、950℃,0.1、1.0、10.0 s-1应变率下的高温变形行为,获得其热压缩过程的流变应力-应变曲线,构建基于Arrhenius方程的本构模型和热加工图,阐明了变形温度和应变率对铸态Cu-1.0Ni-0.2P合金显微组织的影响规律。结果表明:铸态Cu-1.0Ni-0.2P合金对温度、应变率较为敏感,其流变应力总体上随变形温度的升高而降低、随应变率的增大而增大,在真应变ε=0.2和ε=0.4对应的热变形激活能分别为359.102 k J/mol和498.313 k J/mol。同一温度下,当应变率为1、10 s-1时,长条变形晶粒更少或再结晶晶粒较小;随变形温度的升高,合金长条变形晶粒发生再结晶和晶粒长大,当热加工温度为900~950℃时,再结晶组织较为均匀。结合显微组织论证分析得到铸态Cu-1.0Ni-0.2P合金的最佳热加工工艺参数为900~950℃、1 s-1和900℃、10 s-1,为铸态Cu-1.0Ni-0.2P合金的热加工工艺提供理论指导。展开更多
Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show...Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show that the dynamic recrystallization behavior during hot deformation is significantly affected by the trace elements of Si and Ti.The addition of Si and Ti promotes the formation of Ni16Si7Ti6 particles during hot deformation,which promotes the nucleation of dynamic recrystallization by accelerating the transition from low-angle boundaries(LABs)to high-angle boundaries(HABs).Ni16Si7Ti6 particles further inhibit the growth of recrystallized grains through the pinning effect.Based on the dynamic recrystallization behavior,a processing map of the alloy is built up to obtain the optimal processing parameters.Guided by the processing map,a hot-extruded Cu-15 Ni-8Sn alloy with a fine-grained microstructure is obtained,which shows excellent elongation of 30%and ultimate tensile strength of 910 MPa.展开更多
Cu-15Ni-8Sn-0.3Nb alloy rods were prepared by means of powder metallurgy followed by hot extrusion.Element maps obtained by electron probe micro analyzer(EPMA)showed that Nb-rich phases were formed and distributed wit...Cu-15Ni-8Sn-0.3Nb alloy rods were prepared by means of powder metallurgy followed by hot extrusion.Element maps obtained by electron probe micro analyzer(EPMA)showed that Nb-rich phases were formed and distributed within grains and at grain boundaries of the Cu-15Ni-8Sn-0.3Nb alloy.Transmission electron microscope(TEM)results indicated that there was no obvious orientation relationship between these phases and the matrix.Spinodal decomposition and ordering transformation appeared at early stages of aging at400°C and caused significant strengthening.Cu-15Ni-8Sn-0.3Nb alloy exhibited both higher strength(ultimate tensile strength>1030MPa)and higher tensile ductility(elongation>9.1%)than Cu-15Ni-8Sn alloy after aging treatment.The improvement was caused by Nb-rich phases at grain boundaries which led o the refinement of grain size and postponed the growth of discontinuous precipitates during aging.展开更多
Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range...Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50−700 N and a sliding speed range of 0.05−2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm,respectively.Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior.The equation of the dividing line between zones of safe and unsafe wear life was determined.Lubricating oil was squeezed into micro-cracks under severe wear conditions.In addition,the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides,which hindered the repair of micro-cracks,promoted cracks growth,and led to delamination.This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through developing wear map.展开更多
The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of...The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of Ni3Al during oxidation process at high temperature, the spinel NiAI2O4 was also formed in the Al2O3 layer. It was found that the formation of NiAI204 had no detrimental effect on the oxidation resistance of the sputtered N?3O-20AI coating due to the excellent adhesion shown by the Al2O3 and NiAl2O4complex oxide scale.展开更多
Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructur...Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructure and mechanicalproperties of the90W-6Ni-4Mn alloys were investigated.SPS technology was used to prepare90W-6Ni-4Mn alloys withrelatively high density and excellent comprehensive performance at1150-1250°C for3min.The90W-6Ni-4Mn alloys consistedof the W phase and theγ-(Ni,Mn,and W)binding phase,and the average grain size was less than10μm.The Rockwell hardness andbending strength of alloys first increased and then decreased with increasing sintering temperature.The best comprehensiveperformance was obtained at1200°C,its hardness and bending strength were HRA68.7and1162.72MPa,respectively.展开更多
Nanostructural γ-Ni-28Fe alloy(nano γ-Ni-28Fe)was successfully prepared by mechanochemical alloying(MCA).The relationship between the microstructure and the synthesis conditions was investigated by using XRD,TEM,SEM...Nanostructural γ-Ni-28Fe alloy(nano γ-Ni-28Fe)was successfully prepared by mechanochemical alloying(MCA).The relationship between the microstructure and the synthesis conditions was investigated by using XRD,TEM,SEM as well as BET analyzer.The results show that nano γ-Ni-28Fe alloy is composed of a gamma phase(FCC structure).Its grain size is about 20 nm at reduction temperature below 600 ℃.The magnetic measurements indicate that the saturation magnetization of nano γ-Ni-28Fe alloy is 102.4 A·m2/kg,and the coercivity is much higher than that of conventional coarse-grained counterpart.The result may be attributed to its decrease of the grain size and chemical composition in nano γ-Ni-28Fe alloy.展开更多
The ageing behavior of the mechanically alloyed Cu-15Ni-8Sn alloy has been studied. Compared with the alloys prepared by casting and rapid solidification, the modulation structure developed during ageing process of th...The ageing behavior of the mechanically alloyed Cu-15Ni-8Sn alloy has been studied. Compared with the alloys prepared by casting and rapid solidification, the modulation structure developed during ageing process of those prepared by mechanical alloying is finer and much more uniform, which leads to a higher peak hardness. However, their spinodal decomposition temperature are almost the same. Cold deformation prior to ageing not only accelerates the ageing process but also increases the peak hardness of the alloy.展开更多
The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and ...The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element.The zinc deposits in the 2nd zincate treatment became thinly uniform,and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element.XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid.This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.展开更多
Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly...Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.展开更多
By means of the measurement of mechnical properties and resistivity and X-ray diffraction and transmission microscopy,the effect of cold deformation on the kinetics of spinodal decomposition of Cu-9Ni-6Sn-0.3Ce alloy ...By means of the measurement of mechnical properties and resistivity and X-ray diffraction and transmission microscopy,the effect of cold deformation on the kinetics of spinodal decomposition of Cu-9Ni-6Sn-0.3Ce alloy was studied.The strengthening process of the cold-worked and aged alloy was found to be accelerated.Using the theory of dislocation,the strengthening in cold-worked alloy can be attributed to the acceleration of spinodal process.展开更多
Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network ana...Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network analyzer. The results show that electromagnetic shielding effectiveness of Ni-P-La alloy coating varies from 45 dB to 70 dB with the variety of the frequency from 10 MHz to 350 MHz. Corrosion of the salt fog impacts on the electromagnetic shielding effectiveness a little. A small amount of rare earth added to plating bath can not only enhance corrosion resistance of coating, but make electromagnetic shielding effectiveness increase by 1 ~ 5 dB.展开更多
The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles r...The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles rich in chromium, manganese and silicon precipitate during aging, and thereby increase the hardness and strength of the alloy. The shape recovery ratio can be remarkably improved by aging and a maximum value can be obtained at 1223 K, which is 68% higher than that of the specimen in solid solution state. When the aging temperature is below 1223 K, the amount of second phase particles increases as the aging temperature increases. The size of austenite grain increases with increasing aging temperature. When the temperature is over 1223 K, the second phase particles can not precipitate. The lack of second phase particles and the increase of grain size make the hardness and shape recovery ratio drastically decrease, when the temperature is over 1223 K.展开更多
Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surf...Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surface of the Ni-W-P alloy glass fibers in the thermal shock test. It showed that the deposit had high impact strength and good adhesion. The morphology of the coatings was observed by scanning electron microscope (SEM). The elements and their contents were tested and analyzed by energy dispersion spectrometer (EDS). The tungsten content reached up to 12.1 wt.%. The effects of the concentrations of NiSO4, Na2WO4, and NaH2PO2.H20 on the conductivity of the coatings were studied. The resistivity of the Ni-W-P alloy glass fibers reached 7.39 × 10^-3 Ωcm. The alloy coatings on glass fibers were analyzed by XRD. The results indicated that the deposit had an amorphous structure and good heat stability. The suitable work temperature range was lower than 190℃. Finally, the electromagnetic parameters of the Ni-W-P alloy glass fibers were tested and analyzed primarily. The magnetic loss reached 0.04023 and the dielectric loss reached -5.80239. The plated alloy is a kind of soft magnetic material.展开更多
A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic p...A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic polarization and immersing experiments in 3.5% NaCl solution. The wear resistance of the coatings was investigated by the wear track and the mass change after ball-on-disk experiment. The results show that corrosion resistance and wear resistance of the AZ91D alloy are greatly improved after direct electroless Ni-P plating. No discoloration is noticed until 4 d of immersion in 3.5% NaCl solution. Potentiodynamic polarization experiments show that the free corrosion potential of magnesium alloy is shifted from -1 500 mV to -250 mV and passivation occurs at 1 350 mV after direct electroless plating. The friction coefficients and wear rates of Ni-P coating and Ni-P coating after tempering are 0.10-0.351, 9.038×10-3 mm3/m and 0.13-0.177, 3.056×10-4 mm3/m, respectively, at a load of 1.5 N with dry sliding. Although minor hurt on corrosion resistance was caused, significant improvement of wear resistance was obtained after tempering treatment of the coating.展开更多
The formation mechanism of the amorphous Ni-Fe-P coating was studied by analysis of the forming thermodynamics, dynamics, and crystallography of the amorphous alloy. The results show that, in the initial stage of depo...The formation mechanism of the amorphous Ni-Fe-P coating was studied by analysis of the forming thermodynamics, dynamics, and crystallography of the amorphous alloy. The results show that, in the initial stage of deposition a thin 'crystal epitaxial growth' layer first forms, and then transforms to amorphous gradually. The cross section in Ni-Fe-P coatings by electrolytic etching exhibits a banded structure of alternate dark and light bands. It is proposed that the banded structure is caused by a change in the P content with thickness,which is due to alternated depletion and enrichment of [OH-] in the diffusion layer resulting from the generation and evolution of hydrogen gas. The amorphous Ni-Fe-P coating will be formed in proper composition, high nucleation rate and strongly hindered growth of the crystal nucleus. Amorphous Ni-Fe-P alloys form as islands, and grow up by layer.展开更多
The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. T...The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. The deposit transforms into a square Ni3P phase at 380. 0 ℃, then changes into a cubic FeNi3 phase at 490. 0 ℃. The microhardness, the size of the formed grains and the magnetic performance of the deposit increase with the increase of the heat treatment temperature below 500 ℃, then they decrease after this temperature. The effect of heat treatment time at 500 ℃ on the surface micromorphology, the structure and the magnetic performance of the deposit were also studied. The resuits show that with the increase of heat treatment time, the extent of crystallization of the deposit increases and the size of the formed grains becomes uniform. The results also show that the magnetic performance of the deposit under heat treatment for 40 min is maximal and then decreases with the increase of heat treatment time. The property change of the deposit is related to the crystal structure and the size of the formed grains of the deposit.展开更多
文摘研究了铸态Cu-1.0Ni-0.2P合金在750、800、850、900、950℃,0.1、1.0、10.0 s-1应变率下的高温变形行为,获得其热压缩过程的流变应力-应变曲线,构建基于Arrhenius方程的本构模型和热加工图,阐明了变形温度和应变率对铸态Cu-1.0Ni-0.2P合金显微组织的影响规律。结果表明:铸态Cu-1.0Ni-0.2P合金对温度、应变率较为敏感,其流变应力总体上随变形温度的升高而降低、随应变率的增大而增大,在真应变ε=0.2和ε=0.4对应的热变形激活能分别为359.102 k J/mol和498.313 k J/mol。同一温度下,当应变率为1、10 s-1时,长条变形晶粒更少或再结晶晶粒较小;随变形温度的升高,合金长条变形晶粒发生再结晶和晶粒长大,当热加工温度为900~950℃时,再结晶组织较为均匀。结合显微组织论证分析得到铸态Cu-1.0Ni-0.2P合金的最佳热加工工艺参数为900~950℃、1 s-1和900℃、10 s-1,为铸态Cu-1.0Ni-0.2P合金的热加工工艺提供理论指导。
基金Project(2015A030312003) supported by the Guangdong Natural Science Foundation for Research Team,China
文摘Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show that the dynamic recrystallization behavior during hot deformation is significantly affected by the trace elements of Si and Ti.The addition of Si and Ti promotes the formation of Ni16Si7Ti6 particles during hot deformation,which promotes the nucleation of dynamic recrystallization by accelerating the transition from low-angle boundaries(LABs)to high-angle boundaries(HABs).Ni16Si7Ti6 particles further inhibit the growth of recrystallized grains through the pinning effect.Based on the dynamic recrystallization behavior,a processing map of the alloy is built up to obtain the optimal processing parameters.Guided by the processing map,a hot-extruded Cu-15 Ni-8Sn alloy with a fine-grained microstructure is obtained,which shows excellent elongation of 30%and ultimate tensile strength of 910 MPa.
基金Project (2016YFB0301400) supported by the National Key Research and Development Program of ChinaProject (9140A12040515QT48167) supported by the Pre-research Fund of the General Armaments Department of ChinaProject (CSU20151024) supported by the Innovation-driven Plan of Central South University,China
文摘Cu-15Ni-8Sn-0.3Nb alloy rods were prepared by means of powder metallurgy followed by hot extrusion.Element maps obtained by electron probe micro analyzer(EPMA)showed that Nb-rich phases were formed and distributed within grains and at grain boundaries of the Cu-15Ni-8Sn-0.3Nb alloy.Transmission electron microscope(TEM)results indicated that there was no obvious orientation relationship between these phases and the matrix.Spinodal decomposition and ordering transformation appeared at early stages of aging at400°C and caused significant strengthening.Cu-15Ni-8Sn-0.3Nb alloy exhibited both higher strength(ultimate tensile strength>1030MPa)and higher tensile ductility(elongation>9.1%)than Cu-15Ni-8Sn alloy after aging treatment.The improvement was caused by Nb-rich phases at grain boundaries which led o the refinement of grain size and postponed the growth of discontinuous precipitates during aging.
基金Projects(2017YFB0306105,2018YFE0306100)supported by the National Key Research and Development Program of China
文摘Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50−700 N and a sliding speed range of 0.05−2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm,respectively.Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior.The equation of the dividing line between zones of safe and unsafe wear life was determined.Lubricating oil was squeezed into micro-cracks under severe wear conditions.In addition,the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides,which hindered the repair of micro-cracks,promoted cracks growth,and led to delamination.This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through developing wear map.
基金National Natural Science Foundation of China !under grant 59671060
文摘The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of Ni3Al during oxidation process at high temperature, the spinel NiAI2O4 was also formed in the Al2O3 layer. It was found that the formation of NiAI204 had no detrimental effect on the oxidation resistance of the sputtered N?3O-20AI coating due to the excellent adhesion shown by the Al2O3 and NiAl2O4complex oxide scale.
基金Projects(51464010,51461014)supported by the National Natural Science Foundation of ChinaProject(20165207)supported by the Natural Science Foundation of Hainan Province,China
文摘Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructure and mechanicalproperties of the90W-6Ni-4Mn alloys were investigated.SPS technology was used to prepare90W-6Ni-4Mn alloys withrelatively high density and excellent comprehensive performance at1150-1250°C for3min.The90W-6Ni-4Mn alloys consistedof the W phase and theγ-(Ni,Mn,and W)binding phase,and the average grain size was less than10μm.The Rockwell hardness andbending strength of alloys first increased and then decreased with increasing sintering temperature.The best comprehensiveperformance was obtained at1200°C,its hardness and bending strength were HRA68.7and1162.72MPa,respectively.
基金Project(2003jq158) supported by the Hundred Person Program of Chinese Academy of ScienceProject(2006jq1071) supported by the Younger Teacher Foundation of High Education School of Anhui Province,China
文摘Nanostructural γ-Ni-28Fe alloy(nano γ-Ni-28Fe)was successfully prepared by mechanochemical alloying(MCA).The relationship between the microstructure and the synthesis conditions was investigated by using XRD,TEM,SEM as well as BET analyzer.The results show that nano γ-Ni-28Fe alloy is composed of a gamma phase(FCC structure).Its grain size is about 20 nm at reduction temperature below 600 ℃.The magnetic measurements indicate that the saturation magnetization of nano γ-Ni-28Fe alloy is 102.4 A·m2/kg,and the coercivity is much higher than that of conventional coarse-grained counterpart.The result may be attributed to its decrease of the grain size and chemical composition in nano γ-Ni-28Fe alloy.
文摘The ageing behavior of the mechanically alloyed Cu-15Ni-8Sn alloy has been studied. Compared with the alloys prepared by casting and rapid solidification, the modulation structure developed during ageing process of those prepared by mechanical alloying is finer and much more uniform, which leads to a higher peak hardness. However, their spinodal decomposition temperature are almost the same. Cold deformation prior to ageing not only accelerates the ageing process but also increases the peak hardness of the alloy.
文摘The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element.The zinc deposits in the 2nd zincate treatment became thinly uniform,and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element.XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid.This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.
基金Project(2016YFB0301402)supported by the National Key Research and Development Program of ChinaProject(CSU20151024)supported by the Innovation-driven Plan in Central South University,China
文摘Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.
文摘By means of the measurement of mechnical properties and resistivity and X-ray diffraction and transmission microscopy,the effect of cold deformation on the kinetics of spinodal decomposition of Cu-9Ni-6Sn-0.3Ce alloy was studied.The strengthening process of the cold-worked and aged alloy was found to be accelerated.Using the theory of dislocation,the strengthening in cold-worked alloy can be attributed to the acceleration of spinodal process.
基金Project supported by Anhui Province Natural Science Foundation (050440603)
文摘Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network analyzer. The results show that electromagnetic shielding effectiveness of Ni-P-La alloy coating varies from 45 dB to 70 dB with the variety of the frequency from 10 MHz to 350 MHz. Corrosion of the salt fog impacts on the electromagnetic shielding effectiveness a little. A small amount of rare earth added to plating bath can not only enhance corrosion resistance of coating, but make electromagnetic shielding effectiveness increase by 1 ~ 5 dB.
文摘The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles rich in chromium, manganese and silicon precipitate during aging, and thereby increase the hardness and strength of the alloy. The shape recovery ratio can be remarkably improved by aging and a maximum value can be obtained at 1223 K, which is 68% higher than that of the specimen in solid solution state. When the aging temperature is below 1223 K, the amount of second phase particles increases as the aging temperature increases. The size of austenite grain increases with increasing aging temperature. When the temperature is over 1223 K, the second phase particles can not precipitate. The lack of second phase particles and the increase of grain size make the hardness and shape recovery ratio drastically decrease, when the temperature is over 1223 K.
基金The project was financially supported by The Space Foundation of Supporting-Technology of China (No. 2002EK1803)the Graduate Starting Seed Fund of Northwestern Polytechnical University (No. W016663)
文摘Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surface of the Ni-W-P alloy glass fibers in the thermal shock test. It showed that the deposit had high impact strength and good adhesion. The morphology of the coatings was observed by scanning electron microscope (SEM). The elements and their contents were tested and analyzed by energy dispersion spectrometer (EDS). The tungsten content reached up to 12.1 wt.%. The effects of the concentrations of NiSO4, Na2WO4, and NaH2PO2.H20 on the conductivity of the coatings were studied. The resistivity of the Ni-W-P alloy glass fibers reached 7.39 × 10^-3 Ωcm. The alloy coatings on glass fibers were analyzed by XRD. The results indicated that the deposit had an amorphous structure and good heat stability. The suitable work temperature range was lower than 190℃. Finally, the electromagnetic parameters of the Ni-W-P alloy glass fibers were tested and analyzed primarily. The magnetic loss reached 0.04023 and the dielectric loss reached -5.80239. The plated alloy is a kind of soft magnetic material.
基金Project(2006031117-04) supported by Tackling Key Science and Technology of Shanxi Province, ChinaProject(07010763) supported by Academic Innovation of Taiyuan City, China
文摘A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic polarization and immersing experiments in 3.5% NaCl solution. The wear resistance of the coatings was investigated by the wear track and the mass change after ball-on-disk experiment. The results show that corrosion resistance and wear resistance of the AZ91D alloy are greatly improved after direct electroless Ni-P plating. No discoloration is noticed until 4 d of immersion in 3.5% NaCl solution. Potentiodynamic polarization experiments show that the free corrosion potential of magnesium alloy is shifted from -1 500 mV to -250 mV and passivation occurs at 1 350 mV after direct electroless plating. The friction coefficients and wear rates of Ni-P coating and Ni-P coating after tempering are 0.10-0.351, 9.038×10-3 mm3/m and 0.13-0.177, 3.056×10-4 mm3/m, respectively, at a load of 1.5 N with dry sliding. Although minor hurt on corrosion resistance was caused, significant improvement of wear resistance was obtained after tempering treatment of the coating.
文摘The formation mechanism of the amorphous Ni-Fe-P coating was studied by analysis of the forming thermodynamics, dynamics, and crystallography of the amorphous alloy. The results show that, in the initial stage of deposition a thin 'crystal epitaxial growth' layer first forms, and then transforms to amorphous gradually. The cross section in Ni-Fe-P coatings by electrolytic etching exhibits a banded structure of alternate dark and light bands. It is proposed that the banded structure is caused by a change in the P content with thickness,which is due to alternated depletion and enrichment of [OH-] in the diffusion layer resulting from the generation and evolution of hydrogen gas. The amorphous Ni-Fe-P coating will be formed in proper composition, high nucleation rate and strongly hindered growth of the crystal nucleus. Amorphous Ni-Fe-P alloys form as islands, and grow up by layer.
文摘The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. The deposit transforms into a square Ni3P phase at 380. 0 ℃, then changes into a cubic FeNi3 phase at 490. 0 ℃. The microhardness, the size of the formed grains and the magnetic performance of the deposit increase with the increase of the heat treatment temperature below 500 ℃, then they decrease after this temperature. The effect of heat treatment time at 500 ℃ on the surface micromorphology, the structure and the magnetic performance of the deposit were also studied. The resuits show that with the increase of heat treatment time, the extent of crystallization of the deposit increases and the size of the formed grains becomes uniform. The results also show that the magnetic performance of the deposit under heat treatment for 40 min is maximal and then decreases with the increase of heat treatment time. The property change of the deposit is related to the crystal structure and the size of the formed grains of the deposit.