Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the a...Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the amorphous and crystalline filler alloys as well as the joints brazed with them were investigated in details.Results showed that the amorphous filler alloy possessed narrower melting temperature interval,lower liquidus temperature and melting active energy compared with the crystalline filler alloy,and it also exhibited better brazeability on the surface of the Ti.47Al.2Nb.2Cr.0.15B alloy.The TiAl joints brazed with crystalline and amorphous filler alloys were composed of two interfacial reaction layers and a central brazed layer.Under the same conditions,the tensile strength of the joint brazed with the amorphous filler alloy was always higher than that with the crystalline filler alloy.The maxmium tensile strength of the joint brazed at 1273 K with the amorphous filler alloy reached 254 MPa.展开更多
The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of...The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of Ni3Al during oxidation process at high temperature, the spinel NiAI2O4 was also formed in the Al2O3 layer. It was found that the formation of NiAI204 had no detrimental effect on the oxidation resistance of the sputtered N?3O-20AI coating due to the excellent adhesion shown by the Al2O3 and NiAl2O4complex oxide scale.展开更多
A binary Fe-Al alloyed layer was synthesized on 45 steel by means of double glow plasma surface alloying technique. The corrosion-resisting layer prepared is composed of a sedimentary layer and a diffusion layer, with...A binary Fe-Al alloyed layer was synthesized on 45 steel by means of double glow plasma surface alloying technique. The corrosion-resisting layer prepared is composed of a sedimentary layer and a diffusion layer, with a total thickness of about 180 μm. The aluminum content of the alloyed layer shows gradual change from surface to the inside of substrate. The ideal profile is beneficial to the metallurgical bonding of the surface alloying layer with substrate materials. The microstructure of both layers consists of the Fe-Al intermetallic compound, which is FeAl with B2 structure in the sedimentary layer and Fe3Al with incompletely ordered DO3 structure in the diffusion layer. The protective film exhibits high micro-hardness. In comparison with the substrate of 45 steel, the corrosion resistance of the aluminized sample is much higher in 2.0% Na2S and 0.05 mol/L Na2SO4 + 0.5 mol/L NaCl mixed solutions.展开更多
Dislocation structures in the γ phase grains of Ti 45Al 10Nb specimens have been characterized after tensile tests at room temperature. In addition to ordinary dislocations with b=1/2〈110], a certain density of supe...Dislocation structures in the γ phase grains of Ti 45Al 10Nb specimens have been characterized after tensile tests at room temperature. In addition to ordinary dislocations with b=1/2〈110], a certain density of superdislocations and faulted dipoles were observed, which are rarely present in the conventional two phase TiAl base alloys of normal impurity. This difference was attributed to the solution of high Nb in the γ phase, which may increase the CRSS for 〈110] ordinary slip.展开更多
A comprehensive stochastic model for simulating microstructure formation of Ti-45%Al(mole fraction) alloy ingot during solidification process was developed, based on a finite differential method(FDM) for macroscopic h...A comprehensive stochastic model for simulating microstructure formation of Ti-45%Al(mole fraction) alloy ingot during solidification process was developed, based on a finite differential method(FDM) for macroscopic heat flow calculation and a cellular automaton(CA) technique for microscopic modeling of nucleation and growth. The formation of a shrinkage cavity at the top of ingot was taken into account. The effects of process variables such as pouring temperature and mold-preheated temperature on the microstructure formation were investigated. The calculated results indicate that the columnar zone is expanded with increasing pouring temperature in the nonlinear way and the volume fraction of equiaxed zone only slightly varies with the mold-preheated temperature.展开更多
The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced s...The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced special α2/γ intedeces, coherent intedeces with high density of ledges and semi-coherent α2/γ intedeces were found to be due to the absorption of mobile dislocations into the α2/γ inteface. For the misoriented semi-coherent α2/γ interfaces, the densities of dislocation ledges increase with the misoriented angle between (111)γ and (0001)α2 planes, and 1/3[111] Frank partial dislocations were involved in the dislocation ledges. Formation mechanism of these deformation-induced α2/γ interfaces was discussed to be related to the role of α2/γ interface5 adjusting the deformation as a dislocation sink absorbing the slipping dislocations in the γ phase展开更多
A cellular automaton model for simulating grain structure formation during solidification processes of Ti-45%Al(mole fraction) alloy ingot was developed, based on finite differential method for macroscopic modeling of...A cellular automaton model for simulating grain structure formation during solidification processes of Ti-45%Al(mole fraction) alloy ingot was developed, based on finite differential method for macroscopic modeling of heat transfer and a cellular automaton technique for microscopic modeling of nucleation, growth, solute redistribution and solute diffusion. The relation between the growth velocity of a dendrite tip and the local undercooling, which consists of constitutional, thermal, curvature and attachment kinetics undercooling is calculated according to the Kurz-Giovanola-Trivedi model. The effect of solidification contraction is taken into consideration. The influence of process variables upon the resultant grain structures was investigated. Special moving allocation technique was designed to minimize the computation time and memory size associated with a large number of cells. The predicted grain structures are in good agreement with the experimental results.展开更多
The purpose of the present work is to study the NiO cluster formation in Ni3Al alloys by field ion microscope and atom probe (AP-FIM). A polycrystal Ni3Al (B-doped) was heat-treated in atmospheres, the surface adsorpt...The purpose of the present work is to study the NiO cluster formation in Ni3Al alloys by field ion microscope and atom probe (AP-FIM). A polycrystal Ni3Al (B-doped) was heat-treated in atmospheres, the surface adsorption of air (hydrogen, oxygen) moisture etc.) occured on the Ni3Al surface and then these absorbents diffused into the interior of alloy through groin boundaries. AP-FIM studies found that the NiO and AlO clusters appeared in the local regions and amount of NiO clusters is much more than that of AlO. Moreover the hydrogen was simultaneously detected in the identical region.These results provided an experimental evidence that the formation of NiO and AlO clusters is the result of reaction of Ni (or Al) with residual moisture in Ni3Al, i.e. Ni+H2 O→NiO+2H. But the samples of B-free Ni3Al and B-doped single crystal Ni3Al have low concentration of NiO and H. This result shows that the diffusion of H2O molecule was promoted by genie boundaries containing boron. In addition, the boron suppresses environmental emvironmental was discussed, which suggested that the formation of Ni-O bonding has influence on bonding character of Ni-Al atoms and benefits the ductility of alloy.展开更多
In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-d...In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-doped nickel-based alloys, were prepared using vacuum induction melting(VIM) process and then exposed to the electrolysis in molten calcium chloride at 900C at à1.6 V versus graphite reference electrode for different immersion time. The surface and cross-section of the samples were characterized using scanning electron microscopy(SEM), and their electrochemical behavior was investigated by electrochemical impedance spectroscopy(EIS). The results show that the un-doped samples have greater number of voids and porosities as compared to that of the 0.0064 wt% Ce-doped samples(as the optimum content of cerium in the alloy). Thus, the nickel-based alloy becomes less sensitive to the pitting by addition of cerium. The corrosion penetration depth reaches about 244 mm after 16 h of electrolysis in the un-doped sample, while was approximately 103 mm for the 0.0064 wt% Ce-doped sample, which is an indication that the corrosion penetration depth decreases by adding small amounts of Ce.展开更多
基金Foundation item:Project(51865012)supported by the National Natural Science Foundation of ChinaProject(2016005)supported by the Open Foundation of National Engineering Research Center of Near-net-shape Forming for Metallic Materials,China+2 种基金Project(GJJ170372)supported by the Science Foundation of Educational Department of Jiangxi Province,ChinaProject(JCKY2016603C003)supported by the GF Basic Research Project,ChinaProject(JPPT125GH038)supported by the Research Project of Special Furnishment and Part,China
文摘Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the amorphous and crystalline filler alloys as well as the joints brazed with them were investigated in details.Results showed that the amorphous filler alloy possessed narrower melting temperature interval,lower liquidus temperature and melting active energy compared with the crystalline filler alloy,and it also exhibited better brazeability on the surface of the Ti.47Al.2Nb.2Cr.0.15B alloy.The TiAl joints brazed with crystalline and amorphous filler alloys were composed of two interfacial reaction layers and a central brazed layer.Under the same conditions,the tensile strength of the joint brazed with the amorphous filler alloy was always higher than that with the crystalline filler alloy.The maxmium tensile strength of the joint brazed at 1273 K with the amorphous filler alloy reached 254 MPa.
基金National Natural Science Foundation of China !under grant 59671060
文摘The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of Ni3Al during oxidation process at high temperature, the spinel NiAI2O4 was also formed in the Al2O3 layer. It was found that the formation of NiAI204 had no detrimental effect on the oxidation resistance of the sputtered N?3O-20AI coating due to the excellent adhesion shown by the Al2O3 and NiAl2O4complex oxide scale.
基金Project(BK2005128) supported by the Natural Science Foundation of Jiangsu Province, China
文摘A binary Fe-Al alloyed layer was synthesized on 45 steel by means of double glow plasma surface alloying technique. The corrosion-resisting layer prepared is composed of a sedimentary layer and a diffusion layer, with a total thickness of about 180 μm. The aluminum content of the alloyed layer shows gradual change from surface to the inside of substrate. The ideal profile is beneficial to the metallurgical bonding of the surface alloying layer with substrate materials. The microstructure of both layers consists of the Fe-Al intermetallic compound, which is FeAl with B2 structure in the sedimentary layer and Fe3Al with incompletely ordered DO3 structure in the diffusion layer. The protective film exhibits high micro-hardness. In comparison with the substrate of 45 steel, the corrosion resistance of the aluminized sample is much higher in 2.0% Na2S and 0.05 mol/L Na2SO4 + 0.5 mol/L NaCl mixed solutions.
文摘Dislocation structures in the γ phase grains of Ti 45Al 10Nb specimens have been characterized after tensile tests at room temperature. In addition to ordinary dislocations with b=1/2〈110], a certain density of superdislocations and faulted dipoles were observed, which are rarely present in the conventional two phase TiAl base alloys of normal impurity. This difference was attributed to the solution of high Nb in the γ phase, which may increase the CRSS for 〈110] ordinary slip.
文摘A comprehensive stochastic model for simulating microstructure formation of Ti-45%Al(mole fraction) alloy ingot during solidification process was developed, based on a finite differential method(FDM) for macroscopic heat flow calculation and a cellular automaton(CA) technique for microscopic modeling of nucleation and growth. The formation of a shrinkage cavity at the top of ingot was taken into account. The effects of process variables such as pouring temperature and mold-preheated temperature on the microstructure formation were investigated. The calculated results indicate that the columnar zone is expanded with increasing pouring temperature in the nonlinear way and the volume fraction of equiaxed zone only slightly varies with the mold-preheated temperature.
文摘The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced special α2/γ intedeces, coherent intedeces with high density of ledges and semi-coherent α2/γ intedeces were found to be due to the absorption of mobile dislocations into the α2/γ inteface. For the misoriented semi-coherent α2/γ interfaces, the densities of dislocation ledges increase with the misoriented angle between (111)γ and (0001)α2 planes, and 1/3[111] Frank partial dislocations were involved in the dislocation ledges. Formation mechanism of these deformation-induced α2/γ interfaces was discussed to be related to the role of α2/γ interface5 adjusting the deformation as a dislocation sink absorbing the slipping dislocations in the γ phase
基金Project(50395102) supported by the National Natural Science Foundation of China Project (JC 02 10) supported by theDistinguished Young Fund of Heilongjiang Province of China
文摘A cellular automaton model for simulating grain structure formation during solidification processes of Ti-45%Al(mole fraction) alloy ingot was developed, based on finite differential method for macroscopic modeling of heat transfer and a cellular automaton technique for microscopic modeling of nucleation, growth, solute redistribution and solute diffusion. The relation between the growth velocity of a dendrite tip and the local undercooling, which consists of constitutional, thermal, curvature and attachment kinetics undercooling is calculated according to the Kurz-Giovanola-Trivedi model. The effect of solidification contraction is taken into consideration. The influence of process variables upon the resultant grain structures was investigated. Special moving allocation technique was designed to minimize the computation time and memory size associated with a large number of cells. The predicted grain structures are in good agreement with the experimental results.
基金The National Natural Science Foundation of China!(Grant No. 59831020)
文摘The purpose of the present work is to study the NiO cluster formation in Ni3Al alloys by field ion microscope and atom probe (AP-FIM). A polycrystal Ni3Al (B-doped) was heat-treated in atmospheres, the surface adsorption of air (hydrogen, oxygen) moisture etc.) occured on the Ni3Al surface and then these absorbents diffused into the interior of alloy through groin boundaries. AP-FIM studies found that the NiO and AlO clusters appeared in the local regions and amount of NiO clusters is much more than that of AlO. Moreover the hydrogen was simultaneously detected in the identical region.These results provided an experimental evidence that the formation of NiO and AlO clusters is the result of reaction of Ni (or Al) with residual moisture in Ni3Al, i.e. Ni+H2 O→NiO+2H. But the samples of B-free Ni3Al and B-doped single crystal Ni3Al have low concentration of NiO and H. This result shows that the diffusion of H2O molecule was promoted by genie boundaries containing boron. In addition, the boron suppresses environmental emvironmental was discussed, which suggested that the formation of Ni-O bonding has influence on bonding character of Ni-Al atoms and benefits the ductility of alloy.
文摘In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-doped nickel-based alloys, were prepared using vacuum induction melting(VIM) process and then exposed to the electrolysis in molten calcium chloride at 900C at à1.6 V versus graphite reference electrode for different immersion time. The surface and cross-section of the samples were characterized using scanning electron microscopy(SEM), and their electrochemical behavior was investigated by electrochemical impedance spectroscopy(EIS). The results show that the un-doped samples have greater number of voids and porosities as compared to that of the 0.0064 wt% Ce-doped samples(as the optimum content of cerium in the alloy). Thus, the nickel-based alloy becomes less sensitive to the pitting by addition of cerium. The corrosion penetration depth reaches about 244 mm after 16 h of electrolysis in the un-doped sample, while was approximately 103 mm for the 0.0064 wt% Ce-doped sample, which is an indication that the corrosion penetration depth decreases by adding small amounts of Ce.