The extrusion of Al-Si alloy powders with different particle sizes allows manufacture of different products with unique microstructures and therefore with unique mechanical properties. The effects of powder size on th...The extrusion of Al-Si alloy powders with different particle sizes allows manufacture of different products with unique microstructures and therefore with unique mechanical properties. The effects of powder size on the extrusion behavior and process defect of Al-18%Si alloy were studied by means of microscopy (optical, scanning electron) and density determination. The main objective of the work is to demonstrate the influence of the powder material characteristics on final density and quality of bar. The results show that the bigger the powder particles, the better the performance of cold compacting. The surface of alloy bar extruded from big particles has good quality without cracking. While the smaller the powder particles, the higher the density and the better the microstructure and mechanical properties. For practice application, the mixed powders are better than single powder.展开更多
To reduce geological disasters caused by expansive soil,it is crucial to use a new type of modified material to rapidly improve soil strength instead of traditional soil improvement materials such as lime and cement.N...To reduce geological disasters caused by expansive soil,it is crucial to use a new type of modified material to rapidly improve soil strength instead of traditional soil improvement materials such as lime and cement.Nanographite powder(NGP)has excellent properties,such as high adsorption,conductivity,and lubrication,since it has the characteristics of small size,large specific surface area,and high surface energy.However,previous studies on the improvement of expansive soil with NGP are not processed enough.To study the improvement effect of NGP on expansive soil,non-load swelling ratio tests,consolidation tests,unconfined compressive strength tests,mercury injection tests,and micro-CT tests on expansive soil mixed with different NGP contents were performed.The results show that the non-load swelling ratio,mechanical properties,and porosity of expansive soil show some increasement after adding NGP.The strength of expansive soil reaches the maximum when the NGP content is 1.450%.The cumulative mercury volume and compressive strain of expansive soil reach the maximum with the 2.0%NGP content.Finally,the modification mechanism of swelling,compressibility,microstructure,and compressive strength of expansive soil by NGP is revealed.展开更多
In this work,the effects of pH value of waste water and initial concentration of phosphorus on dephosphorization materials were investigated.The materials were prepared by shaping,sintering and hydrothermal reshaping ...In this work,the effects of pH value of waste water and initial concentration of phosphorus on dephosphorization materials were investigated.The materials were prepared by shaping,sintering and hydrothermal reshaping oyster shell and silica micro-powder.Different concentrations of phosphorus-contained waste water were simulated with potassium dihydrogen phosphate solution,the effect of dephosphorization was tested with phosphomolybdenum blue spectrophotometer method,and the crystal phase and microstructure of materials were characterized by XRD and SEM methods. It was indicated that dephosphorization was completed in 6 h when the initial phosphorus concentration in waste water was lower than 15 mg/L, and the dephosphorization time prolonged as the increase of phosphorus concentration. It was observed that the pH value of waste water influenced dephosphorization significantly, and neutral subalkalic environment favored dephosphorization. When the pH value was 11, the efficiency of dephosphozation was the greatest. For waste water with an initial concentration of 20 mg/L, the dephosphozation rate is close to 100% in8 h.展开更多
OBJECTIVE: To observe the effects of Zhenren Yangzang Decoction combined with modified Shenling Baizhu Powder on the immune function and intestinal microecology of diarrhea patients with deficiency and cold syndrome. ...OBJECTIVE: To observe the effects of Zhenren Yangzang Decoction combined with modified Shenling Baizhu Powder on the immune function and intestinal microecology of diarrhea patients with deficiency and cold syndrome. METHODS: A total of 60 diarrhea patients with deficiency and cold syndrome were randomly divided into observation group and control group, with 30 cases in each group. The control group was treated with conventional western medicine. The observation group was given the treatment of Zhenren Yangzang Decoction combined with modified Shenling Baizhu Powder on the basis of the same treatment for 4 weeks. The clinical symptoms, fecal flora and immunoglobulin content of the 2 groups were observed and the clinical efficacy was evaluated. RESULTS: After treatment, the symptoms scores of fecal diarrhea, aversion to cold, cold limbs, loss of appetite, cold and painful waist and knee, abdominal fullness, abdominal distension and abdominal pain, and intestinal bacilli contents were significantly decreased(P < 0.05). The contents of lactobacillus, bifidus bacilli, IgG, IgM and IgA were significantly increased(P < 0.05), and the improvement of the above indexes in the observation group was significantly better than that in the control group(P < 0.05). The total effective rate after treatment in the observation group was 93.3%, which was significantly higher than 73.3% of the control group(P < 0.05). CONCLUSION: The treatment of diarrhea patients with deficiency and cold syndrome with Zhenren Yangzang Decoction and modified Shenling Baizhu Powder can effectively improve the intestinal micro-ecological environment, improve the immune function of patients and promote the rapid recovery of patients.展开更多
[Objective] The study aimed to discover the effects of powder active carbon( PAC) /flotation /micro-flocculation /ultrafiltration combined process on the treatment of reservoir water. [Method]Taken the water from a ...[Objective] The study aimed to discover the effects of powder active carbon( PAC) /flotation /micro-flocculation /ultrafiltration combined process on the treatment of reservoir water. [Method]Taken the water from a mountainous reservoir for the initial samples,the parameters such as turbidity,COD Mn,chlorophyll-a and methylisobormeol( MIB) of water samples were monitored before and after treated with combined processes of micro-flocculation /ultrafiltration, flotation /micro-flocculation /ultrafiltration, PAC /flotation /micro-flocculation /ultrafiltration. [Result] The results showed that the removal rates of turbidity of water samples by the above three processes were 97. 5%,98. 0% and 98. 6%,respectively. The removal rates of COD Mn were 30. 9%,35. 0% and 52. 0%. The removal rates of chlorophyll-a were 80. 6%,91. 0% and 99. 0%. The removal rates of MIB were 17. 0%,34. 2% and 97. 0%. [Conclusion]The PAC /flotation /micro-flocculation ultrafiltration combined process can be flexibly combined based on the characteristics of algae and odor in water,and is suitable for water plant construction or reconstruction.展开更多
In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's ...In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's heat transfer capabilities were first analyzed, then copper powders with different cell sizes and dispersions were sintered in RXL-12-11 resistance furnace under the protection of the hydrogen at different sintering temperatures for different durations of sintering time, and finally the sintered wicks' scanning electron microscope (SEM) images and their heat transfer capabilities were analyzed. The results indicate that the wick sintered with copper powders of larger cell size or smaller size range has better sintering properties and larger heat transfer capabilities; and that the increase of either sintering temperatures or sintering time also helps to improve the wick's sintering properties and heat transfer capabilities, and the former affects more obviously than the latter. Considering both its manufacturing cost and performance requirements, it is recommended that copper powders with the size range of 140-170 μm are sintered at 900-950℃ for 30-60 min in practical manufacturing. In addition, two approaches to improve wick's porosity are also proposed through theoretical analysis, which suggests that the larger the wick's porosity, the better the heat transfer capabilities of the MHP.展开更多
Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.H...Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.However,existing metallic component 3D printing techniques are mainly for the manufacture of single material components.With the increasing commercial applications of AM technologies,the need for 3D printing of more than one type of dissimilar materials in a single component increases.Therefore,investigations on multi-material AM(MMAM)emerge over the past decade.Lasers are currently widely used for the AM of metallic components where high temperatures are involved.Here we report the progress and trend in laser-based macro-and micro-scale AM of multiple metallic components.The methods covered in this paper include laser powder bed fusion,laser powder directed energy deposition,and laser-induced forward transfer for MMAM applications.The principles and process/material characteristics are described.Potential applications and challenges are discussed.Finally,future research directions and prospects are proposed.展开更多
High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of...High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of Y_2O_3 particles were controlled by such processingparameters as concentration of YCl_3 and oxalic acid and complex non-ionic surfactant etc. TEMphotomicrographs show that Y_2O_3 particles are spherical in shape, with an average diameter of lessthan 30 nm. Test results certify that the purity and particle diameter as well as the dispersion ofY_2O_3 nano-powder depend on the concentrations of YCl_3, oxalic acid and complex non-ionicsurfactant. The optimum ranges of the concentrations for YCl_3 and complex non-ionic surfactant whenthe diameter of Y_2O_3 particles is smaller than 100 nm are 0.43 ~1.4 mol ? L^(-1) and0.031~0.112 mol·L^(-1) respectively, while the mass fraction range of oxalic acid is 10% ~18% .The purity of Y_2O_3 nano-powder tested by ICP-AES analysis is 99.99% .展开更多
基金Project(514120203) supported by the Advanced Investigation Foundation of Weapon Equipment
文摘The extrusion of Al-Si alloy powders with different particle sizes allows manufacture of different products with unique microstructures and therefore with unique mechanical properties. The effects of powder size on the extrusion behavior and process defect of Al-18%Si alloy were studied by means of microscopy (optical, scanning electron) and density determination. The main objective of the work is to demonstrate the influence of the powder material characteristics on final density and quality of bar. The results show that the bigger the powder particles, the better the performance of cold compacting. The surface of alloy bar extruded from big particles has good quality without cracking. While the smaller the powder particles, the higher the density and the better the microstructure and mechanical properties. For practice application, the mixed powders are better than single powder.
基金Project(2017TFC1503102)supported by the National Key Research and Development Project,ChinaProjects(51874065,U1903112)supported by the National Natural Science Foundation of China。
文摘To reduce geological disasters caused by expansive soil,it is crucial to use a new type of modified material to rapidly improve soil strength instead of traditional soil improvement materials such as lime and cement.Nanographite powder(NGP)has excellent properties,such as high adsorption,conductivity,and lubrication,since it has the characteristics of small size,large specific surface area,and high surface energy.However,previous studies on the improvement of expansive soil with NGP are not processed enough.To study the improvement effect of NGP on expansive soil,non-load swelling ratio tests,consolidation tests,unconfined compressive strength tests,mercury injection tests,and micro-CT tests on expansive soil mixed with different NGP contents were performed.The results show that the non-load swelling ratio,mechanical properties,and porosity of expansive soil show some increasement after adding NGP.The strength of expansive soil reaches the maximum when the NGP content is 1.450%.The cumulative mercury volume and compressive strain of expansive soil reach the maximum with the 2.0%NGP content.Finally,the modification mechanism of swelling,compressibility,microstructure,and compressive strength of expansive soil by NGP is revealed.
基金Supported by Fujian Science and Technology Administration (2004I003 and 20060037)
文摘In this work,the effects of pH value of waste water and initial concentration of phosphorus on dephosphorization materials were investigated.The materials were prepared by shaping,sintering and hydrothermal reshaping oyster shell and silica micro-powder.Different concentrations of phosphorus-contained waste water were simulated with potassium dihydrogen phosphate solution,the effect of dephosphorization was tested with phosphomolybdenum blue spectrophotometer method,and the crystal phase and microstructure of materials were characterized by XRD and SEM methods. It was indicated that dephosphorization was completed in 6 h when the initial phosphorus concentration in waste water was lower than 15 mg/L, and the dephosphorization time prolonged as the increase of phosphorus concentration. It was observed that the pH value of waste water influenced dephosphorization significantly, and neutral subalkalic environment favored dephosphorization. When the pH value was 11, the efficiency of dephosphozation was the greatest. For waste water with an initial concentration of 20 mg/L, the dephosphozation rate is close to 100% in8 h.
文摘OBJECTIVE: To observe the effects of Zhenren Yangzang Decoction combined with modified Shenling Baizhu Powder on the immune function and intestinal microecology of diarrhea patients with deficiency and cold syndrome. METHODS: A total of 60 diarrhea patients with deficiency and cold syndrome were randomly divided into observation group and control group, with 30 cases in each group. The control group was treated with conventional western medicine. The observation group was given the treatment of Zhenren Yangzang Decoction combined with modified Shenling Baizhu Powder on the basis of the same treatment for 4 weeks. The clinical symptoms, fecal flora and immunoglobulin content of the 2 groups were observed and the clinical efficacy was evaluated. RESULTS: After treatment, the symptoms scores of fecal diarrhea, aversion to cold, cold limbs, loss of appetite, cold and painful waist and knee, abdominal fullness, abdominal distension and abdominal pain, and intestinal bacilli contents were significantly decreased(P < 0.05). The contents of lactobacillus, bifidus bacilli, IgG, IgM and IgA were significantly increased(P < 0.05), and the improvement of the above indexes in the observation group was significantly better than that in the control group(P < 0.05). The total effective rate after treatment in the observation group was 93.3%, which was significantly higher than 73.3% of the control group(P < 0.05). CONCLUSION: The treatment of diarrhea patients with deficiency and cold syndrome with Zhenren Yangzang Decoction and modified Shenling Baizhu Powder can effectively improve the intestinal micro-ecological environment, improve the immune function of patients and promote the rapid recovery of patients.
基金Supported by Water Pollution Control and Treatment National Science and Technology Major Project(2012ZX07404-003)Major Projects of Science and Technology of Jinan City(201201133)
文摘[Objective] The study aimed to discover the effects of powder active carbon( PAC) /flotation /micro-flocculation /ultrafiltration combined process on the treatment of reservoir water. [Method]Taken the water from a mountainous reservoir for the initial samples,the parameters such as turbidity,COD Mn,chlorophyll-a and methylisobormeol( MIB) of water samples were monitored before and after treated with combined processes of micro-flocculation /ultrafiltration, flotation /micro-flocculation /ultrafiltration, PAC /flotation /micro-flocculation /ultrafiltration. [Result] The results showed that the removal rates of turbidity of water samples by the above three processes were 97. 5%,98. 0% and 98. 6%,respectively. The removal rates of COD Mn were 30. 9%,35. 0% and 52. 0%. The removal rates of chlorophyll-a were 80. 6%,91. 0% and 99. 0%. The removal rates of MIB were 17. 0%,34. 2% and 97. 0%. [Conclusion]The PAC /flotation /micro-flocculation ultrafiltration combined process can be flexibly combined based on the characteristics of algae and odor in water,and is suitable for water plant construction or reconstruction.
基金Key Project(50436010, U0834002) supported by the National Natural Science Foundation of ChinaProjects(50675070, 50705031) supported by the National Natural Science Foundation of China+1 种基金Project(8151064101000058) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(E200909) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's heat transfer capabilities were first analyzed, then copper powders with different cell sizes and dispersions were sintered in RXL-12-11 resistance furnace under the protection of the hydrogen at different sintering temperatures for different durations of sintering time, and finally the sintered wicks' scanning electron microscope (SEM) images and their heat transfer capabilities were analyzed. The results indicate that the wick sintered with copper powders of larger cell size or smaller size range has better sintering properties and larger heat transfer capabilities; and that the increase of either sintering temperatures or sintering time also helps to improve the wick's sintering properties and heat transfer capabilities, and the former affects more obviously than the latter. Considering both its manufacturing cost and performance requirements, it is recommended that copper powders with the size range of 140-170 μm are sintered at 900-950℃ for 30-60 min in practical manufacturing. In addition, two approaches to improve wick's porosity are also proposed through theoretical analysis, which suggests that the larger the wick's porosity, the better the heat transfer capabilities of the MHP.
文摘Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.However,existing metallic component 3D printing techniques are mainly for the manufacture of single material components.With the increasing commercial applications of AM technologies,the need for 3D printing of more than one type of dissimilar materials in a single component increases.Therefore,investigations on multi-material AM(MMAM)emerge over the past decade.Lasers are currently widely used for the AM of metallic components where high temperatures are involved.Here we report the progress and trend in laser-based macro-and micro-scale AM of multiple metallic components.The methods covered in this paper include laser powder bed fusion,laser powder directed energy deposition,and laser-induced forward transfer for MMAM applications.The principles and process/material characteristics are described.Potential applications and challenges are discussed.Finally,future research directions and prospects are proposed.
文摘High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of Y_2O_3 particles were controlled by such processingparameters as concentration of YCl_3 and oxalic acid and complex non-ionic surfactant etc. TEMphotomicrographs show that Y_2O_3 particles are spherical in shape, with an average diameter of lessthan 30 nm. Test results certify that the purity and particle diameter as well as the dispersion ofY_2O_3 nano-powder depend on the concentrations of YCl_3, oxalic acid and complex non-ionicsurfactant. The optimum ranges of the concentrations for YCl_3 and complex non-ionic surfactant whenthe diameter of Y_2O_3 particles is smaller than 100 nm are 0.43 ~1.4 mol ? L^(-1) and0.031~0.112 mol·L^(-1) respectively, while the mass fraction range of oxalic acid is 10% ~18% .The purity of Y_2O_3 nano-powder tested by ICP-AES analysis is 99.99% .