The nickel‐based complex Ni‐CH3CH2NH2‐intercalated niobate layered perovskite Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was synthesized via a facile in situ chemical reaction method.Using ultrathin H1.78Sr0.78Bi0.22Nb2O7...The nickel‐based complex Ni‐CH3CH2NH2‐intercalated niobate layered perovskite Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was synthesized via a facile in situ chemical reaction method.Using ultrathin H1.78Sr0.78Bi0.22Nb2O7nanosheets and nickel acetate as precursors.The composition,structure,photophysical properties,and photocatalytic activity for H2production of Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7were studied systematically.The photocatalyst loaded with0.5wt%Ni exhibited the highest H2evolution rate of372.67μmo/h.This was0.54times higher than the activity of the H1.78Sr0.78Bi0.22Nb2O7nanosheets.The activity of the optimized Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was comparable to that of the Pt‐loaded sample under the same reaction conditions.The photocatalytic activity of the Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was mainly attributed to the excellent separation of photogenerated carriers,after formation of the intercalated complex Ni‐CH3CH2NH2.This study provides a facile strategy to synthesize a non‐precious metal‐loaded photocatalyst for H2production.展开更多
基金supported by the National Natural Science Foundation of China(U1403193,21643012)~~
文摘The nickel‐based complex Ni‐CH3CH2NH2‐intercalated niobate layered perovskite Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was synthesized via a facile in situ chemical reaction method.Using ultrathin H1.78Sr0.78Bi0.22Nb2O7nanosheets and nickel acetate as precursors.The composition,structure,photophysical properties,and photocatalytic activity for H2production of Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7were studied systematically.The photocatalyst loaded with0.5wt%Ni exhibited the highest H2evolution rate of372.67μmo/h.This was0.54times higher than the activity of the H1.78Sr0.78Bi0.22Nb2O7nanosheets.The activity of the optimized Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was comparable to that of the Pt‐loaded sample under the same reaction conditions.The photocatalytic activity of the Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was mainly attributed to the excellent separation of photogenerated carriers,after formation of the intercalated complex Ni‐CH3CH2NH2.This study provides a facile strategy to synthesize a non‐precious metal‐loaded photocatalyst for H2production.