通过在镍钴双金属氢氧化物(Ni-Co LDH)的合成体系中引入胺修饰板钛矿TiO2得到了Ni-Co LDH/TiO2复合光催化材料,并对其光催化降解环丙沙星(CIP)抗生素的活性进行了研究。扫描电子显微镜(SEM)显示Ni-Co LDH将棒状的板钛矿TiO2完全包裹,增...通过在镍钴双金属氢氧化物(Ni-Co LDH)的合成体系中引入胺修饰板钛矿TiO2得到了Ni-Co LDH/TiO2复合光催化材料,并对其光催化降解环丙沙星(CIP)抗生素的活性进行了研究。扫描电子显微镜(SEM)显示Ni-Co LDH将棒状的板钛矿TiO2完全包裹,增大了材料与环丙沙星分子的接触面积。当TiO2与LDH的摩尔比为1:4时,复合材料表现出最佳的催化活性且Ni-Co LDH/TiO2(1:4)在四次循环实验后仍未出现明显的活性下降,说明其具有优异的稳定性。光电化学结果证明这种结构为光催化环丙沙星降解提供了更多的活性位点,其优异的光生电子与空穴的分离和传输效率是其具有最佳催化活性的主要原因。Ni-Co LDH/brookite TiO2 composite is prepared by adding amine-modified TiO2 into the fabrication system of Ni-Co layered bimetallic hydroxide (Ni-Co LDH), and its photocatalytic degradation of ciprofloxacin (CIP) antibiotic is studied. Scanning electron microscopy (SEM) images show that Ni-Co LDH wrapped on the brookite TiO2 increases the contact area between the catalyst and ciprofloxacin molecules. It is found that when the mole ratio of TiO2 to Ni-Co LDH is 1:4, the composite exhibits the best catalytic activity, and the activity of Ni-Co LDH/TiO2(1:4) has no decrease significantly after four cycles tests, indicating that it has excellent stability. The photochemical results show that this structure provides more active sites for photocatalytic ciprofloxacin degradation, and its excellent separation and transfer efficiency of photogenerated electrons and holes are the main reason for its optimal catalytic activity.展开更多
文摘通过在镍钴双金属氢氧化物(Ni-Co LDH)的合成体系中引入胺修饰板钛矿TiO2得到了Ni-Co LDH/TiO2复合光催化材料,并对其光催化降解环丙沙星(CIP)抗生素的活性进行了研究。扫描电子显微镜(SEM)显示Ni-Co LDH将棒状的板钛矿TiO2完全包裹,增大了材料与环丙沙星分子的接触面积。当TiO2与LDH的摩尔比为1:4时,复合材料表现出最佳的催化活性且Ni-Co LDH/TiO2(1:4)在四次循环实验后仍未出现明显的活性下降,说明其具有优异的稳定性。光电化学结果证明这种结构为光催化环丙沙星降解提供了更多的活性位点,其优异的光生电子与空穴的分离和传输效率是其具有最佳催化活性的主要原因。Ni-Co LDH/brookite TiO2 composite is prepared by adding amine-modified TiO2 into the fabrication system of Ni-Co layered bimetallic hydroxide (Ni-Co LDH), and its photocatalytic degradation of ciprofloxacin (CIP) antibiotic is studied. Scanning electron microscopy (SEM) images show that Ni-Co LDH wrapped on the brookite TiO2 increases the contact area between the catalyst and ciprofloxacin molecules. It is found that when the mole ratio of TiO2 to Ni-Co LDH is 1:4, the composite exhibits the best catalytic activity, and the activity of Ni-Co LDH/TiO2(1:4) has no decrease significantly after four cycles tests, indicating that it has excellent stability. The photochemical results show that this structure provides more active sites for photocatalytic ciprofloxacin degradation, and its excellent separation and transfer efficiency of photogenerated electrons and holes are the main reason for its optimal catalytic activity.