In this study,the double loaded Co-Fe-B@g-C_(3)N_(4)/NF(NF:Ni foam)thin film catalysts were prepared for the first time via chemical deposition method at room temperature.By optimizing the reducing agent concentration...In this study,the double loaded Co-Fe-B@g-C_(3)N_(4)/NF(NF:Ni foam)thin film catalysts were prepared for the first time via chemical deposition method at room temperature.By optimizing the reducing agent concentration to 0.9 mol·L^(-1),the as-obtained Co-Fe-B@g-C_(3)N_(4)/NF exhibited the twisted ribbon structure with more distinct three-dimensional hierarchy and the smaller particle size,showing the good catalytic property for the hydrolysis of NaBH_(4)solution.The H_(2)generation rate of Co-Fe-B@g-C_(3)N_(4)/NF and binary Co-B@g-C_(3)N_(4)/NF under visible light irradiation surpassed the value under natural condition.The apparent activation energy of Co-Fe-B@g-C_(3)N_(4)/NF(45.0 kJ·mol^(-1))under visible light irradiation was obviously reduced when compared with the natural condition(48.4 kJ·mol^(-1))and binary Co-B@g-C_(3)N_(4)/NF(60.6 kJ·mol^(-1))under visible light irradiation.Furthermore,the catalytic performance of the optimized Co-Fe-B@g-C_(3)N_(4)/NF thin film catalyst was superior to most of the reported non-noble metal and even noble metal catalysts.Hence,it illustrated that the catalytic H_(2)production performance of Co-Fe-B@g-C_(3)N_(4)/NF thin film was distinctly improved after the introduction of light and multicomponent recombination.展开更多
High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstr...High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstructured catalyst is constructed by depositing NiFe-layered double hydroxides(NiFe-LDH)on the substrate of MXene(V_(2)CT_(x))modified Ni foam(NF),and abbreviated as NiFe-LDH/V_(2)CT_(x)/NF.As demonstrated,owing to the intrinsic negative charge characteristic of V_(2)CT_(x),chlorine ions are denied entry to the interface between NiFeLDH and V_(2)CT_(x)/NF substrate,thus endowing NiFe-LDH/V_(2)CT_(x)/NF catalyst with high corrosion resistance and durable stability for 110 h at 500 mA cm^(-2).Meanwhile,the two-dimensional structure and high electrical conductivity of V_(2)CT_(x) can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer,thereby synergistically promoting the catalytic performance of NiFe-LDH/V_(2)CT_(x)/NF in both deionized water electrolyte(261 m V at 100 m A cm^(-2))and simulated seawater electrolyte(241 mV at 100 mA cm^(-2)).This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.展开更多
Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Nei...Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Neither noble metal Pt nor transition metal compounds show satisfactory performances for both HER and OER simultaneously. Here, we prepared a three-dimensional Pt-Ni3 Se2@NiOOH/NF(PNOF) hybrid catalyst via in-situ growth strategy. Benefitting from the self-supported structure and oxygen vacancies on the surface of NiOOH nanosheets, the PNOF electrode shows remarkably catalytic performance for dual HER and OER. The overall water electrolyzer using PNOF as anode and cathode can achieve a current density of10 mA cm^-2 at a low voltage of 1.52 V with excellent long-term stability, which is superior to precious metal catalysts of Pt/C and Ir/C. This study provides a promising strategy for preparing bifunctional catalysts with high performance.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22075186)the Natural Science Foundation of Liaoning Province(No.2022-MS310)+3 种基金the Scientific Research Fund of Liaoning Provincial Education Department(Nos.JYTZD2023184 and LJKZ0993)the Revitalization Talents Program of Liaoning Province(No.XLYC1907013)the science and technology innovation Program of Hunan Province(No.2023RC4021)the Hundred Talent Program and Major Incubation Project of Shenyang Normal University(No.ZD202003)。
文摘In this study,the double loaded Co-Fe-B@g-C_(3)N_(4)/NF(NF:Ni foam)thin film catalysts were prepared for the first time via chemical deposition method at room temperature.By optimizing the reducing agent concentration to 0.9 mol·L^(-1),the as-obtained Co-Fe-B@g-C_(3)N_(4)/NF exhibited the twisted ribbon structure with more distinct three-dimensional hierarchy and the smaller particle size,showing the good catalytic property for the hydrolysis of NaBH_(4)solution.The H_(2)generation rate of Co-Fe-B@g-C_(3)N_(4)/NF and binary Co-B@g-C_(3)N_(4)/NF under visible light irradiation surpassed the value under natural condition.The apparent activation energy of Co-Fe-B@g-C_(3)N_(4)/NF(45.0 kJ·mol^(-1))under visible light irradiation was obviously reduced when compared with the natural condition(48.4 kJ·mol^(-1))and binary Co-B@g-C_(3)N_(4)/NF(60.6 kJ·mol^(-1))under visible light irradiation.Furthermore,the catalytic performance of the optimized Co-Fe-B@g-C_(3)N_(4)/NF thin film catalyst was superior to most of the reported non-noble metal and even noble metal catalysts.Hence,it illustrated that the catalytic H_(2)production performance of Co-Fe-B@g-C_(3)N_(4)/NF thin film was distinctly improved after the introduction of light and multicomponent recombination.
基金the financial support of the National Natural Science Foundation of China(52162027,52274297 and 52164028)the Hainan Province Science and Technology Special Fund(ZDYF2023SHFZ091)+4 种基金the Hainan Provincial Natural Science Foundation of China(project Nos.221RC540)Hainan Provincial Postdoctoral Science Foundation(project Nos.2022-BH-25)the Collaborative Innovation Center of Marine Science and Technology(Hainan University)the Start-up Research Foundation of Hainan University(KYQD(ZR)2008,23069,23073 and 23067)the specific research fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202315)。
文摘High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstructured catalyst is constructed by depositing NiFe-layered double hydroxides(NiFe-LDH)on the substrate of MXene(V_(2)CT_(x))modified Ni foam(NF),and abbreviated as NiFe-LDH/V_(2)CT_(x)/NF.As demonstrated,owing to the intrinsic negative charge characteristic of V_(2)CT_(x),chlorine ions are denied entry to the interface between NiFeLDH and V_(2)CT_(x)/NF substrate,thus endowing NiFe-LDH/V_(2)CT_(x)/NF catalyst with high corrosion resistance and durable stability for 110 h at 500 mA cm^(-2).Meanwhile,the two-dimensional structure and high electrical conductivity of V_(2)CT_(x) can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer,thereby synergistically promoting the catalytic performance of NiFe-LDH/V_(2)CT_(x)/NF in both deionized water electrolyte(261 m V at 100 m A cm^(-2))and simulated seawater electrolyte(241 mV at 100 mA cm^(-2)).This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.
基金supported by the National Natural Science Foundation of China(51804216,51472178 and U1601216)Tianjin Natural Science Foundation(16JCYBJC17600)and Shen-zhen Science and Technology Foundation(JCYJ20170307145703486)
文摘Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Neither noble metal Pt nor transition metal compounds show satisfactory performances for both HER and OER simultaneously. Here, we prepared a three-dimensional Pt-Ni3 Se2@NiOOH/NF(PNOF) hybrid catalyst via in-situ growth strategy. Benefitting from the self-supported structure and oxygen vacancies on the surface of NiOOH nanosheets, the PNOF electrode shows remarkably catalytic performance for dual HER and OER. The overall water electrolyzer using PNOF as anode and cathode can achieve a current density of10 mA cm^-2 at a low voltage of 1.52 V with excellent long-term stability, which is superior to precious metal catalysts of Pt/C and Ir/C. This study provides a promising strategy for preparing bifunctional catalysts with high performance.