Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
The effect of cerium on ignition temperature of AZ91D magnesium alloy was studie d. By the addition of cerium of 1%, the ignition temperature is raised by 180 ℃ , s o the magnesium alloy added with cerium can be melt...The effect of cerium on ignition temperature of AZ91D magnesium alloy was studie d. By the addition of cerium of 1%, the ignition temperature is raised by 180 ℃ , s o the magnesium alloy added with cerium can be melted in air. The burning temper ature increases with the increasing of cerium. The structure and chemical compos itions of the surface oxide film were investigated by XRD and Auger electron spe ctrometry(AES). The results of XRD indicate that the oxide film of the surface o f ignition-inhibition magnesium alloy can change from loose structure of simple magnesia to compact composite structure consisting of magnesia, cerium oxide, M g17 A112 and aluminum oxide, which has excellent ignition-inhibition effect. AE S depth profile analysis shows that the oxide film can be divided into three lay ers. The outside layer is mainly made up of magnesia, the middle layer, which co nsists of cerium oxide, magnesia, and aluminum oxide, is compound and compact. T hermodynamic analysis indicates that the structure of the surface oxide film is accordant to the change of free energy and high vapor pressure of magnesium.展开更多
The effect of surface roughness of aluminum oxide (95%) substrate on the properties of Ni-Cr alloy thin film is studied.The thin films are prepared on the substrates with different roughness by using magnetron sputter...The effect of surface roughness of aluminum oxide (95%) substrate on the properties of Ni-Cr alloy thin film is studied.The thin films are prepared on the substrates with different roughness by using magnetron sputtering.The micro-structure,adhesive and electrical properties of the thin films were investigated by using scanning electron microscopy,scratch method and four-probe method.The burst voltage and current of the thin film transducers with different substrates were measured according to D-optimization method.The results show that the particle size,structural defect,resistivity and adhesion strength of the thin film increase with the increase of the substrate roughness.The difference among the burst time of the samples with difference substrate roughness gradually decreases with the increase of stimulation amount.The burst time is approximate to 20 μs in the charging voltage of 37 V.展开更多
Magnesium alloy is prone to burning during its melting and casting processes in air, which is a major factor of obstructing its application. Fluxes and cover gases are currently used for the melting and production pro...Magnesium alloy is prone to burning during its melting and casting processes in air, which is a major factor of obstructing its application. Fluxes and cover gases are currently used for the melting and production processes, and semi-solid casting is also used to shape composites made of magnesium alloy, but there still remain many problems. Alloying is a promising method of preventing magnesium from burning. The effect of RE additions on the ignition temperature of AZ91D magnesium alloy was investigated. The changes of the quality of oxidation film and the as-cast microstructure were analyzed, and the mechanical property was compared with that without rare earth. For AZ91D with RE in the range of 0.08% to 0.12%. It is shown that the ignition temperature point can be greatly heightened, the quality of oxidation film is obviously improved, the as-cast microstructure is refined greatly, and the mechanical property is bettered a little, therefore, such an alloy is promising.展开更多
Ni-Cr/h-BN self-lubricating composities were prepared by powder metallurgy (P/M) method.The effects of hexagonal boron nitride (h-BN) content on the mechanical and tribological properties of the Ni-Cr/h-BN composites ...Ni-Cr/h-BN self-lubricating composities were prepared by powder metallurgy (P/M) method.The effects of hexagonal boron nitride (h-BN) content on the mechanical and tribological properties of the Ni-Cr/h-BN composites were investigated.The corresponding frictional models were established to analyze the formation of the lubricant h-BN films on the surfaces of the Ni-Cr/h-BN composites.The results show that,when the content of h-BN increases from 5% to 15% (mass fraction),the bending strength of the Ni-Cr/h-BN composite decreases from 96.670 MPa to 17.319 MPa,and the hardness (HB) decreases from 33 to 14.The friction coefficient of the Ni-Cr/h-BN composite decreases firstly from 0.385 to 0.216,and then increases to 0.284,while the wear rate decreases firstly from 4.14×10-9 kg/(N·m) to 1.35×10-9 kg/(N·m),then increases to 2.36×10-9 kg/(N·m).The best comprehensive mechanical and tribological properties can be obtained between 10% and 12% h-BN addition.展开更多
NiCr micron-resistor was designed and prepared by magnetron sputtering and lithography on the substrate of silicon with different powers. It is found that there exists a big gap in the TCR between the annealed group a...NiCr micron-resistor was designed and prepared by magnetron sputtering and lithography on the substrate of silicon with different powers. It is found that there exists a big gap in the TCR between the annealed group and the un-annealed group. A series of tests were made to figure out the reasons lying behind the gap in the TCR between the annealed group and the un-annealed group. UV reflection results show that there is no increase in the concentration of free electrons after annealing. However, the data obtained from XRD reveal that the annealing does not have an obvious influence on the strain of thin films, but really increases the grain size of thin films. Therefore, the grain boundary scattering plays a dominant role in explaining the obvious difference in the TCR. Finally through appropriate methods, a micron-resistor for heating-up with a low TCR value was obtained.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
文摘The effect of cerium on ignition temperature of AZ91D magnesium alloy was studie d. By the addition of cerium of 1%, the ignition temperature is raised by 180 ℃ , s o the magnesium alloy added with cerium can be melted in air. The burning temper ature increases with the increasing of cerium. The structure and chemical compos itions of the surface oxide film were investigated by XRD and Auger electron spe ctrometry(AES). The results of XRD indicate that the oxide film of the surface o f ignition-inhibition magnesium alloy can change from loose structure of simple magnesia to compact composite structure consisting of magnesia, cerium oxide, M g17 A112 and aluminum oxide, which has excellent ignition-inhibition effect. AE S depth profile analysis shows that the oxide film can be divided into three lay ers. The outside layer is mainly made up of magnesia, the middle layer, which co nsists of cerium oxide, magnesia, and aluminum oxide, is compound and compact. T hermodynamic analysis indicates that the structure of the surface oxide film is accordant to the change of free energy and high vapor pressure of magnesium.
文摘The effect of surface roughness of aluminum oxide (95%) substrate on the properties of Ni-Cr alloy thin film is studied.The thin films are prepared on the substrates with different roughness by using magnetron sputtering.The micro-structure,adhesive and electrical properties of the thin films were investigated by using scanning electron microscopy,scratch method and four-probe method.The burst voltage and current of the thin film transducers with different substrates were measured according to D-optimization method.The results show that the particle size,structural defect,resistivity and adhesion strength of the thin film increase with the increase of the substrate roughness.The difference among the burst time of the samples with difference substrate roughness gradually decreases with the increase of stimulation amount.The burst time is approximate to 20 μs in the charging voltage of 37 V.
文摘Magnesium alloy is prone to burning during its melting and casting processes in air, which is a major factor of obstructing its application. Fluxes and cover gases are currently used for the melting and production processes, and semi-solid casting is also used to shape composites made of magnesium alloy, but there still remain many problems. Alloying is a promising method of preventing magnesium from burning. The effect of RE additions on the ignition temperature of AZ91D magnesium alloy was investigated. The changes of the quality of oxidation film and the as-cast microstructure were analyzed, and the mechanical property was compared with that without rare earth. For AZ91D with RE in the range of 0.08% to 0.12%. It is shown that the ignition temperature point can be greatly heightened, the quality of oxidation film is obviously improved, the as-cast microstructure is refined greatly, and the mechanical property is bettered a little, therefore, such an alloy is promising.
基金Project(MKPT-03-182) supported by the Ministry of Science and Technology of China
文摘Ni-Cr/h-BN self-lubricating composities were prepared by powder metallurgy (P/M) method.The effects of hexagonal boron nitride (h-BN) content on the mechanical and tribological properties of the Ni-Cr/h-BN composites were investigated.The corresponding frictional models were established to analyze the formation of the lubricant h-BN films on the surfaces of the Ni-Cr/h-BN composites.The results show that,when the content of h-BN increases from 5% to 15% (mass fraction),the bending strength of the Ni-Cr/h-BN composite decreases from 96.670 MPa to 17.319 MPa,and the hardness (HB) decreases from 33 to 14.The friction coefficient of the Ni-Cr/h-BN composite decreases firstly from 0.385 to 0.216,and then increases to 0.284,while the wear rate decreases firstly from 4.14×10-9 kg/(N·m) to 1.35×10-9 kg/(N·m),then increases to 2.36×10-9 kg/(N·m).The best comprehensive mechanical and tribological properties can be obtained between 10% and 12% h-BN addition.
文摘NiCr micron-resistor was designed and prepared by magnetron sputtering and lithography on the substrate of silicon with different powers. It is found that there exists a big gap in the TCR between the annealed group and the un-annealed group. A series of tests were made to figure out the reasons lying behind the gap in the TCR between the annealed group and the un-annealed group. UV reflection results show that there is no increase in the concentration of free electrons after annealing. However, the data obtained from XRD reveal that the annealing does not have an obvious influence on the strain of thin films, but really increases the grain size of thin films. Therefore, the grain boundary scattering plays a dominant role in explaining the obvious difference in the TCR. Finally through appropriate methods, a micron-resistor for heating-up with a low TCR value was obtained.