期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CH_4 reforming with CO_2 for syngas production over La_2O_3 promoted Ni catalysts supported on mesoporous nanostructured γ-Al_2O_3 被引量:1
1
作者 Narges Habibi Mehran Rezaei +1 位作者 Nasrollah Majidian Mahmood Anache 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期435-442,共8页
Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared sa... Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2.g-1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and Oxide to drv reformin feed increased the methane conversion and led to carbon free ooeration in combined orocesses. 展开更多
关键词 NANoSTRUCTURED γ-a12o3 nickel catalyst dry reforming lanthanum oxide
下载PDF
Investigation of fluorescence characterization and electrochemical behavior on the catalysts of nanosized Pt-Rh/y-AI203 to oxidize gaseous ammonia
2
作者 Chang-Mao HUNG Wen-Liang LAI Jane-Li LIN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2013年第3期428-434,共7页
This work describes the environmentally friendly technology for oxidation of ammonia (NH3) to form nitrogen at temperatures range from 423K to 673K by selective catalytic oxidation (SCO) over a nanosized Pt- Rh/γ... This work describes the environmentally friendly technology for oxidation of ammonia (NH3) to form nitrogen at temperatures range from 423K to 673K by selective catalytic oxidation (SCO) over a nanosized Pt- Rh/γ-A12O3 catalyst prepared by the incipient wetness impregnation method of hexachloroplatinic acid (H2PtC16) and rhodium (Ⅲ) nitrate (Rh(NO3)3) with γ-A12O3 in a tubular fixed-bed flow quartz reactor (TFBR). The characterization of catalysts were thoroughly measured using transmission electron microscopy (TEM), three- dimensional excitation-emission fluorescent matrix (EEFM) spectroscopy, UV-Vis absorption, dynamic light- scattering (DLS), zeta potential meter, and cyclic voltam- metry (CV). The results demonstrated that at a temperature of 673K and an oxygen content of4%, approximately 99% of the NH3 was removed by catalytic oxidation over the nanosized Pt-Rh/γ-A12O3 catalyst. N2 was the main product in NH3-SCO process. Further, it reveals that the oxidation of NH3 was proceeds by the over-oxidation of NH3 into NO, which was conversely reacted with the NH3 to yield N2. Therefore, the application ofnanosized Pt-Rh/γ-A12O3 catalyst can significantly enhance the catalytic activity toward NH3 oxidation. One fluorescent peak for fresh catalyst was different with that of exhausted catalyst. It indicates that EEFM spectroscopy was proven to be an appropriate and effective method to characterize the Pt clusters in intrinsic emission from nanosized Pt-Rh/γ-A12O3 catalyst. Results obtained from the CV may explain the significant catalytic activity of the catalysts. 展开更多
关键词 ammonia (NH3 nanosized Pt- Rh/γ-a12o3catalyst excitation-emission fluorescent matrix (EEFM) selective catalytic oxidation (SCo tubular fixed-bedreactor (TFBR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部