期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
集成有CNTs和Ni-Ni(OH)_(2)异质结构的电解析氢自支撑薄膜催化剂
1
作者 赵万成 马加朋 +6 位作者 田栋 康宝涛 夏方诠 成婧 吴亚军 王梦遥 武刚 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第7期287-295,共9页
氢气是一种重要的能量储存载体.通过电解水析氢的方式,可以将其他可再生能源转化为电能,并以化学能的形式储存于氢气中.为了提高电解析氢过程的能量转化效率、降低能耗,需要高活性的析氢催化剂.这些催化剂不仅应具有巨大的比表面积,还... 氢气是一种重要的能量储存载体.通过电解水析氢的方式,可以将其他可再生能源转化为电能,并以化学能的形式储存于氢气中.为了提高电解析氢过程的能量转化效率、降低能耗,需要高活性的析氢催化剂.这些催化剂不仅应具有巨大的比表面积,还应具备适中的氢吸附能和较强的解离水的能力.铂基催化剂在电解析氢方面展现出了显著的优势,而同族的镍基催化剂因其高性价比而备受关注.然而,在电解析氢过程中,镍基催化剂存在氢吸附强度高和解离水能力弱两个重要缺陷,这导致析氢过程动力学不理想.因此,本文的研究思路是探索如何在镍基催化剂中引入功能性组分,以平衡氢吸附能和催化水解离的能力,从而实现析氢性能的提升.研究表明,碳纳米管(CNTs)可以改善催化剂的电解析氢性能,而Ni(OH)_(2)则可以提升催化剂解离水的能力.因此,本文采用复合电沉积法制得CNTs-Ni薄膜,并通过原位氧化在其表面形成Ni-Ni(OH)_(2)异质结构,构建了包含CNTs和Ni-Ni(OH)_(2)两种功能组分的CNTs-Ni-Ni(OH)_(2)薄膜.该薄膜展现出与Pt/C相当的析氢活性和更出色的稳定性.微观形貌分析显示,CNTs的引入使CNTs-Ni薄膜具有复杂的三维结构,镍以高度褶皱的微球形态均匀负载在CNTs表面,形成巨大的比表面积.电化学测试和模拟计算结果证实,CNTs-Ni薄膜的析氢活性较纯镍有显著提高,这归因于其巨大的电化学活性面积以及CNTs对析氢过程动力学的积极影响.当优化沉积时间和CNTs表面镍的负载量时,CNTs-Ni薄膜的电化学活性面积和析氢活性均得到显著提升.进一步氧化处理后,通过X射线光电子能谱和X射线衍射等测试手段证实了Ni-Ni(OH)_(2)异质结构的形成,并观察到电化学活性面积的增大和析氢活性的改善.此外,深入研究发现,随着氧化时间的延长,单位电化学活性面积上的析氢活性出现下降.结合析氢过程的背景电流分析推测,在析氢过程中CNTs-Ni-Ni(OH)_(2)表面发生氢氧化镍的还原,重新生成的镍活性位点对提升析氢过程动力学起到关键作用.但过长的氧化时间可能会破坏镍活性位点的再生.基于此理论构建的计算模型验证了CNTs和异质结构对析氢活性的协同增强作用,使氢的吸附自由能达到理想值,理论上氢在复合薄膜表面的析出过电位接近于0 V.因此,在碱性溶液中,集成有CNTs和Ni-Ni(OH)_(2)异质结构的CNTs-Ni-Ni(OH)_(2)析氢催化剂表现出优异的性能,其氢气起始析出电位为0 V,当阴极电流密度分别为10和50 mA/cm^(2)时,析氢过电位也仅为65和109 mV.综上所述,本文通过复合电沉积和原位氧化的方式获得了CNTs-Ni-Ni(OH)_(2)自支撑析氢催化剂,不仅体现出明显的几何效应,而且也对析氢过程的动力学产生了积极影响.这种整合多种功能性组分的方式,为未来设计和制备高活性、高性价比的电解析氢材料提供了新的思路. 展开更多
关键词 ni-ni(oh)_(2)异质结构
下载PDF
Boosting electrocatalytic nitrate reduction to ammonia via Cu_(2)O/Cu(OH)_(2)heterostructures promoting electron transfer
2
作者 Jing Geng Sihan Ji 《Nano Research》 SCIE EI CSCD 2024年第6期4898-4907,共10页
Electrocatalytic nitrate(NO_(3)^(−))reduction to ammonia(NH_(3))offers a viable approach for sustainable NH_(3)production and environmental denitrification.Copper(Cu)possesses a distinctive electronic structure,which ... Electrocatalytic nitrate(NO_(3)^(−))reduction to ammonia(NH_(3))offers a viable approach for sustainable NH_(3)production and environmental denitrification.Copper(Cu)possesses a distinctive electronic structure,which can augment the reaction kinetics of NO_(3)^(−)and impede hydrogen evolution reaction(HER),rendering it a promising contender for the electrosynthesis of NH_(3)from NO_(3)^(−).Nevertheless,the role of Cu_(2)O in copper-based catalysts still requires further investigation for a more comprehensive understanding.Herein,the Cu_(2)O/Cu(OH)_(2)heterostructures are successfully fabricated through liquid laser irradiation using CuO nanoparticles as a precursor.Experimental and theoretical researches reveal that Cu_(2)O/Cu(OH)_(2)heterostructure exhibits enhanced electrocatalytic performance for NO_(3)^(−)to NH_(3)because Cu(OH)_(2)promotes electron transfer and reduces the valence state of Cu active site in Cu_(2)O.At−0.6 V(vs.reversible hydrogen electrode(RHE)),the NH_(3)yield reaches its maximum at 1630.66±29.72μg·h^(−1)·mgcat^(−1),while the maximum of Faraday efficiency(FE)is 76.95%±5.51%.This study expands the technical scope of copper-based catalyst preparation and enhances the understanding of the electrocatalytic mechanism of NO_(3)^(−)to NH_(3). 展开更多
关键词 Cu_(2)O/Cu(oh)_(2)heterostructures electron transfer ammonia synthesis electrocatalysts nitrate
原文传递
Ni(OH)_(2) Derived from NiS_(2) Induced by Reflux Playing Three Roles for Hydrogen/Oxygen Evolution Reaction 被引量:1
3
作者 Sheng-Jun Xu Ya-Nan Zhou +1 位作者 Guo-Ping Shen Bin Dong 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第8期52-57,共6页
Developing efficient and promising non-noble catalysts for oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) is vital but still a huge challenge for the clean energy system. Herein, we have integrate... Developing efficient and promising non-noble catalysts for oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) is vital but still a huge challenge for the clean energy system. Herein, we have integrated the active components for OER(Ni(OH)_(2)) and HER(Ni S_(2) and Ni(OH)_(2)) into Ni(OH)_(2)@NiS_(2) heterostructures by a facile reflux method. The in-situ formed Ni(OH)_(2) thin layer is coated on the surface of hollow Ni S2 nanosphere. The uniform Ni(OH)_(2)@NiS_(2) hollow sphere processes enlarge the electrochemically active specific surface area and enhance the intrinsic activity compared to NiS_(2) precursor, which affords a current density of 10 m A cm^(-2) at the overpotential of 309 m V and 100 m Acm^(-2) at 359 m V for OER. Meanwhile, Ni(OH)_(2)@NiS_(2) can reach 10 m A cm^(-2) at 233 m V for HER, superior to pure NiS_(2). The enhanced performance can be attributed to the synergy between Ni(OH)_(2) and NiS_(2). Specifically, Ni(OH)_(2) has three functions for water splitting: providing active sites for hydrogen adsorption and hydroxyl group desorption and working as real OER active sites. Moreover, Ni(OH)_(2)@NiS_(2) displays great stability for OER(50 h) and HER(30 h). 展开更多
关键词 Ni(oh)_(2) NiS_(2) heterostructureS oxygen evolution reaction hydrogen evolution reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部