For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattic...For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.展开更多
After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bo...After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.展开更多
TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti...TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.展开更多
Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, ani...Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.展开更多
The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study ...The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.展开更多
Ni-P matrix composite coating reinforced by carbon nanotubes (CNTs) was deposit ed by electroless plating. The most important factors that influence the content of carbon nanotubes in deposits,such as agitation,surfac...Ni-P matrix composite coating reinforced by carbon nanotubes (CNTs) was deposit ed by electroless plating. The most important factors that influence the content of carbon nanotubes in deposits,such as agitation,surfactant and carbon nanot ubes concentration in the plating bath were investigated. The surface morphology,structure and properties of the Ni-P-CNTs coating were examined. It is found that the maximum content of carbon nanotubes in the deposits is independent of carbon nanotubes concentration in the plating bath when it is up to 5 mg/L. The test results show that the carbon nanotubes co-deposited do not change the str ucture of the Ni-P matrix of the composite coating,but greatly increase the ha rdness and wear resistance and decrease the friction coefficient of the Ni-P-C NTs composite coating with increasing content of carbon nanotubes in deposits.展开更多
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The elemen...A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.展开更多
The free and forced vibration of large deformation composite plate embedded with shape memory alloy (SMA) fibers is investigated. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is employ...The free and forced vibration of large deformation composite plate embedded with shape memory alloy (SMA) fibers is investigated. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is employed and the constitutive equations for evaluation of the properties of a hybrid SMA composite laminate are obtained. Based on the nonlinear theory of symmetrically laminated anisotropic plates, the governing equations of flexural vibration in terms of displacement and stress functions are derived. The Galerkin method has been used to convert the original partial differential equation into a nonlinear ordinary differential equation, which is then solved with harmonic balance method. The numerical results show that the relationship between nonlinear natural frequency ratio and temperature for the nonlinear plate has similar characteristics compared with that of the linear one, and the effects of temperature on forced response behavior during phase transformation from Martensite to Austenite are significant. The effects of the volume fraction of the SMA fiber, aspect ratio and free vibration amplitude on the dynamical behavior of the plate are also discussed.展开更多
The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 part...The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 particles, but an orbital interaction through the mutual overlap of the d orbits does exist in the interfacial regions between Ni atoms and Zr 3+ ions.展开更多
Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective...Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective or fully orthogonalization is used to solve the eigenvalue problem of pencil(K,M).Some problems on shift,which is essential for the success of this method, are discussed.A few numerical examples, including composite square plates and conical shells,are presented. The results show that the method in this paper is efficient and reliable for vibration mode analysis.展开更多
Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electroma...Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electromagnetic shielding effectiveness were investigated. And P content, microstructure and surface feature of layers obtained at different temperatures were analyzed by energy dispersion spectrometer (EDS), X-ray diffraction (XRI)) and scanning electron microscopy (SEM). The results showed that layers with higher electro-conductivity and electromagnetic shielding effectiveness were obtained under the optimum conditions that plating solution was 500 mL, plating time was 30 min and plating temperature was 62℃. The results showed by EDS analysis; that P content increased gradually in a small extent with plating temperature increased. It was showed by XRD and SEM analysis that layers plated at different temperatures were all microcrystalline structure and uniform and successive, which had noticeable metal luster. Those indicated that plating temperature had little influence on microstructure and surface feature under pH value invariable.展开更多
In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carrie...In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carried out at middle temperature (62-65℃) with the application of ultrasonic agitation. The copper deposition rate was determined by measuring the weight gain of the powder after plating. It has been found that the pretreatment of Ti3SiC2 powder is very important to obtain copper nanoparticles on the surface of Ti3SiC2 The optimum procedure before plating aimed to add activated sites and the adjustment of the traditional composition of the electroless copper plating bath could decelerate the copper deposition rate to 0.8 gm/h. X-ray diffraction (XRD) indicates that the chemical composition of the plating layer is copper. SEM images show that the surface of the Ti3SiC2 particles is successfully coated with continuous copper layer. The wetting property between the copper matrix and Ti3SiC2 can be improved so as to increase the interfacial strength.展开更多
Nickel-phosphorus (Ni-P) composite coatings containing potassium titanate (K2Ti6O13) whiskers (PTWs) were prepared by electroless plating. The surface morphology and component of coatings were investigated by sc...Nickel-phosphorus (Ni-P) composite coatings containing potassium titanate (K2Ti6O13) whiskers (PTWs) were prepared by electroless plating. The surface morphology and component of coatings were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively before and after wear test. The tribological performance was evaluated using a pin-on-disk wear tester under dry conditions. It is found that the Ni-P-PTWs composite coatings exhibit higher wear resistance than Ni-P and Ni-P-SiC electroless coatings. The favorable effects of PTWs on the tribological properties of the composite coatings are attributed to the super-strong mechanical properties and the specific tunneling structures of PTWs. The PTWs greatly reinforce the structure of the Ni-P-based composite coatings and thereby greatly reduce the adhesive and plough wear of Ni-P-PTWs composite coatings.展开更多
Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite ...Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are es- tablished. By applying the ?nite di?erence method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial di?erential gov- erning equations are solved. Some examples are given and the results are compared with available data.展开更多
Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new model...Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.展开更多
The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates...The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.展开更多
This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforc...This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.展开更多
Alumped parameter transversevibration model of a composite plate harvester is analyzed via harmonic balance approaches. The harvester is mainly composed of a piezoelectriccircular composite clamped by two steel rings ...Alumped parameter transversevibration model of a composite plate harvester is analyzed via harmonic balance approaches. The harvester is mainly composed of a piezoelectriccircular composite clamped by two steel rings and a proof mass on the plate.The lumped parameter model is a 1.5 degree-of-freedom strongly nonlinear system with a higher order polynomial stiffness. Aharmonic balance approach is developed to analyze the system, and the resulting algebraic equations are numerically solved by adopting an arc-length continuation technique. Anincremental harmonic balance approach is also developedfor the lumped parameter model. The two approaches yieldthe same results.The amplitude-frequency responses produced by the harmonic balance approach are validated by the numericalintegrations and the experimental data. The investigation reveals that there coexist hardening and softening characteristics in the amplitude-frequency response curves under sufficiently large excitations. The harvester with thecoexistenceof hardening and softening nonlinearitiescan outperform not only linear energy harvesters but also typical hardening nonlinear energy harvesters.展开更多
文摘For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.
基金Project(2014DFA50860)supported by International Science&Technology Cooperation Program of China
文摘After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.
基金supports from the National Natural Science Foundation of China(Nos.52075472,52004242)the National Key Research and Development Program of China(No.2018YFA0707300)the Natural Science Foundation of Hebei Province,China(No.E2020203001)。
文摘TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.
文摘Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.
文摘The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.
文摘Ni-P matrix composite coating reinforced by carbon nanotubes (CNTs) was deposit ed by electroless plating. The most important factors that influence the content of carbon nanotubes in deposits,such as agitation,surfactant and carbon nanot ubes concentration in the plating bath were investigated. The surface morphology,structure and properties of the Ni-P-CNTs coating were examined. It is found that the maximum content of carbon nanotubes in the deposits is independent of carbon nanotubes concentration in the plating bath when it is up to 5 mg/L. The test results show that the carbon nanotubes co-deposited do not change the str ucture of the Ni-P matrix of the composite coating,but greatly increase the ha rdness and wear resistance and decrease the friction coefficient of the Ni-P-C NTs composite coating with increasing content of carbon nanotubes in deposits.
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
文摘A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.
文摘The free and forced vibration of large deformation composite plate embedded with shape memory alloy (SMA) fibers is investigated. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is employed and the constitutive equations for evaluation of the properties of a hybrid SMA composite laminate are obtained. Based on the nonlinear theory of symmetrically laminated anisotropic plates, the governing equations of flexural vibration in terms of displacement and stress functions are derived. The Galerkin method has been used to convert the original partial differential equation into a nonlinear ordinary differential equation, which is then solved with harmonic balance method. The numerical results show that the relationship between nonlinear natural frequency ratio and temperature for the nonlinear plate has similar characteristics compared with that of the linear one, and the effects of temperature on forced response behavior during phase transformation from Martensite to Austenite are significant. The effects of the volume fraction of the SMA fiber, aspect ratio and free vibration amplitude on the dynamical behavior of the plate are also discussed.
文摘The interfacial interaction existing in the Ni ZrO 2 composite plating has been investigated. The experimental results show that no new phases were formed in the interfacial regions between matrix Ni and ZrO 2 particles, but an orbital interaction through the mutual overlap of the d orbits does exist in the interfacial regions between Ni atoms and Zr 3+ ions.
文摘Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective or fully orthogonalization is used to solve the eigenvalue problem of pencil(K,M).Some problems on shift,which is essential for the success of this method, are discussed.A few numerical examples, including composite square plates and conical shells,are presented. The results show that the method in this paper is efficient and reliable for vibration mode analysis.
基金The research was supported by the National Natural Science Foundation of China (30571454). Natural Science Foundation of Heilongjiang Province (C0210) and Harbin City Youth Science Faud (2004AFQXJ027).
文摘Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electromagnetic shielding effectiveness were investigated. And P content, microstructure and surface feature of layers obtained at different temperatures were analyzed by energy dispersion spectrometer (EDS), X-ray diffraction (XRI)) and scanning electron microscopy (SEM). The results showed that layers with higher electro-conductivity and electromagnetic shielding effectiveness were obtained under the optimum conditions that plating solution was 500 mL, plating time was 30 min and plating temperature was 62℃. The results showed by EDS analysis; that P content increased gradually in a small extent with plating temperature increased. It was showed by XRD and SEM analysis that layers plated at different temperatures were all microcrystalline structure and uniform and successive, which had noticeable metal luster. Those indicated that plating temperature had little influence on microstructure and surface feature under pH value invariable.
文摘In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carried out at middle temperature (62-65℃) with the application of ultrasonic agitation. The copper deposition rate was determined by measuring the weight gain of the powder after plating. It has been found that the pretreatment of Ti3SiC2 powder is very important to obtain copper nanoparticles on the surface of Ti3SiC2 The optimum procedure before plating aimed to add activated sites and the adjustment of the traditional composition of the electroless copper plating bath could decelerate the copper deposition rate to 0.8 gm/h. X-ray diffraction (XRD) indicates that the chemical composition of the plating layer is copper. SEM images show that the surface of the Ti3SiC2 particles is successfully coated with continuous copper layer. The wetting property between the copper matrix and Ti3SiC2 can be improved so as to increase the interfacial strength.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50335060)the Excellent Young Teacher Award of the Education Ministry of China(No.[2002]383).
文摘Nickel-phosphorus (Ni-P) composite coatings containing potassium titanate (K2Ti6O13) whiskers (PTWs) were prepared by electroless plating. The surface morphology and component of coatings were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively before and after wear test. The tribological performance was evaluated using a pin-on-disk wear tester under dry conditions. It is found that the Ni-P-PTWs composite coatings exhibit higher wear resistance than Ni-P and Ni-P-SiC electroless coatings. The favorable effects of PTWs on the tribological properties of the composite coatings are attributed to the super-strong mechanical properties and the specific tunneling structures of PTWs. The PTWs greatly reinforce the structure of the Ni-P-based composite coatings and thereby greatly reduce the adhesive and plough wear of Ni-P-PTWs composite coatings.
基金Project supported by the National Natural Science Foundation of China (No.10272024).
文摘Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are es- tablished. By applying the ?nite di?erence method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial di?erential gov- erning equations are solved. Some examples are given and the results are compared with available data.
基金The project is supported by the National Natural Science Foundation of China(10502028)the Special Foundation for the Authors of the Nationwide(China)Excellent Doctoral Dissertation(200242)the Science Research Foundation of China Agricultural University(2004016).
文摘Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node) quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore, the hybrid post-rocessing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.
基金Project supported by the National Natural Science Foundation of China(Nos.11402127,11290152 and 11072008)
文摘The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.
文摘This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.
基金This work was supported by the National Natural Science Foundation of China (Grants 51575334 and 11802170)the State Key Program of National Natural Science Foundation of China (Grant 11232009)+1 种基金the Key Research Projects of Shanghai Science and Technology Commission (Grant 18010500100)the Innovation Program of Shanghai Municipal Education Commission (Grant 2017-01-07-00-09-E00019).
文摘Alumped parameter transversevibration model of a composite plate harvester is analyzed via harmonic balance approaches. The harvester is mainly composed of a piezoelectriccircular composite clamped by two steel rings and a proof mass on the plate.The lumped parameter model is a 1.5 degree-of-freedom strongly nonlinear system with a higher order polynomial stiffness. Aharmonic balance approach is developed to analyze the system, and the resulting algebraic equations are numerically solved by adopting an arc-length continuation technique. Anincremental harmonic balance approach is also developedfor the lumped parameter model. The two approaches yieldthe same results.The amplitude-frequency responses produced by the harmonic balance approach are validated by the numericalintegrations and the experimental data. The investigation reveals that there coexist hardening and softening characteristics in the amplitude-frequency response curves under sufficiently large excitations. The harvester with thecoexistenceof hardening and softening nonlinearitiescan outperform not only linear energy harvesters but also typical hardening nonlinear energy harvesters.