期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Ni-P电沉积的初始阶段:沉积层的形貌和组成
1
《材料保护》 CAS CSCD 北大核心 2003年第7期65-65,共1页
关键词 ni-p电沉积 沉积 形貌 组成 原子力显微镜 X-射线光子光谱仪 镀层
下载PDF
Microstructure and depositional mechanism of Ni-P coatings with nano-ceria particles by pulse electrodeposition 被引量:1
2
作者 周小卫 沈以赴 +1 位作者 靳惠明 郑莹莹 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1981-1988,共8页
Nano-CeO2 (RE) particles were co-deposited into Ni-P binary composite coatings by applying pulse current (PC) under ultrasonic (U) field. Morphology, chemical content and crystal microstructure were characterize... Nano-CeO2 (RE) particles were co-deposited into Ni-P binary composite coatings by applying pulse current (PC) under ultrasonic (U) field. Morphology, chemical content and crystal microstructure were characterized by environmental scanning electron microscopy (E-SEM) with energy dispersive X-ray analysis (EDXA), XRD diffractometry and transmission electron microscopy (TEM). Experimental results show that Ni-P coating reinforced with 15g/L nano-CeO2, in amorphous state and with compact structure, can be improved in the microhardness from HV0.2580 to HV0.2780 by annealing at 600 °C for 2 h. The highest content of codeposited Ce and deposition rate can reach 2.3% and 68 μm/h, respectively. Furthermore, the effect of RE adsorption and pulse overpotential on depositional mechanism was investigated. n-CeO2 particles or Ce4+ ions with strong adsorption capacity acted as the catalytic nucleus to improve densification effectively. During annealing at 600 °C for 2 h, n-CeO2 particles will uniformly adsorb on crystal grain to preferentially pad and heal up gaps of cracking Ni boundaries, promoting dispersion strengthening with refiner-grained structure. 展开更多
关键词 ni-p coating pulse electrodeposition OVERPOTENTIAL depositional mechanism CEO2
下载PDF
Fabrication of Co-Ni-P film with excellent wear and corrosion resistance by electroplating with supercritical CO_2 emulsion 被引量:3
3
作者 Can-sen LIU Feng-hua SU Ji-zhao LIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第12期2489-2498,共10页
To avoid the defects caused by the hydrogen evolution and improve the corrosion and wear properties of the electroplated films in the traditional aqueous bath electrodeposition,a supercritical carbon dioxide(Sc-CO2)em... To avoid the defects caused by the hydrogen evolution and improve the corrosion and wear properties of the electroplated films in the traditional aqueous bath electrodeposition,a supercritical carbon dioxide(Sc-CO2)emulsion was proposed to electrodeposite ternary nanocrystalline Co-Ni-P alloy films.Microstructure,corrosive and tribological properties of the Co-Ni-P films were investigated and compared with the ones electroplated by conventional method.The results show that the Co-Ni-P films produced with Sc-CO2assisted electrodeposition exhibit a more compact microstructure.The preferred orientation plane of hcp(110)for the Co-Ni-P films produced in conventional aqueous bath is changed to be hcp(100)for the one prepared in emulsified Sc-CO2bath.The microhardness,corrosion resistance and tribological properties of the Co-Ni-P films are substantially improved with the assistance of Sc-CO2in the electrodeposition bath. 展开更多
关键词 Co-ni-p film electrodeposition supercritical carbon dioxide wear corrosion
下载PDF
Electrochemical characteristics of electroplating and impregnation Ni-P/SiC/PTFE composite coating on 316L stainless steel 被引量:4
4
作者 GAO Ping-ping GAO Mei-lian +6 位作者 WU An-ru WU Xiao-bo LIU Chun-xun ZHANG Yang ZHOU Hai-kun PENG Xiao-min XIE Zhi-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3615-3624,共10页
Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by... Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by scanning electron microscope and energy dispersive spectrometer.The corrosion resistance of the coating in 0.5 mol/L H2SO4+2×10−6 HF solution was studied by electrochemical method.Surface contact angle was used to test the hydrophobic properties of the coating.The results indicated that the Ni-P/SiC/PTFE coating prepared on the surface of stainless steel was uniform and compact,which significantly improved the self-corrosion potential of stainless steel.The self-corrosion current density decreased from 7.62 to 0.008μA/cm2.The durability performance of coating was tested under 0.6 V voltage and the stable corrosion current density value was 0.19μA/cm2,then wetting angle was tested after durability experiment and the value is 134.5°. 展开更多
关键词 316L stainless steel electroplate ni-p PTFE SiC corrosion resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部