Electrochemical dechlorination of chloroform in neutral aqueous solution was investigated using palladium-loaded electrodes at ambient temperature. Palladium/foam-nickel (Pd/foam-Ni) and palladium/polymeric pyrrole ...Electrochemical dechlorination of chloroform in neutral aqueous solution was investigated using palladium-loaded electrodes at ambient temperature. Palladium/foam-nickel (Pd/foam-Ni) and palladium/polymeric pyrrole film/foam-nickel (Pd/PPy/foam-Ni) composite electrodes which provided catalytic surface for reductive dechlorination of chloroform in aqueous solution were prepared using an electrodepositing method. Scanning electron microscope (SEM) micrographs showed that polymeric pyrrole film modified the electrode-surface characteristics and resulted in the uniform dispersion of needle-shaped palladium particles on foam-Ni supporting electrode. The experimental results of dechlorination indicated that the removal efficiency of chloroform and current efficiency in neutral aqueous solution on Pd/PPy/foam-Ni electrode could be up to 36.8% and 33.0% at dechlorination current of 0.1 mA and dechlorination time of 180 min, which is much higher than that of Pd/foam-Ni electrode.展开更多
In order to improve the electrochemical kinetic performances of La-Mg-Ni-based alloy,complex surface modification of Ni with excellent catalytic activity and conducting polymer polypyrrole(PPy)was performed via electr...In order to improve the electrochemical kinetic performances of La-Mg-Ni-based alloy,complex surface modification of Ni with excellent catalytic activity and conducting polymer polypyrrole(PPy)was performed via electroless plating method.FESEM images revealed that the complex Ni-PPy treatment resulted in more micropores at the alloy surface,with Ni particles and cotton fiber-shape PPy microspheres attached.Both the larger surface area induced by the micropore and the higher catalytic activity and conductivity on account of the dispersed Ni particles/PPy microspheres promoted the electrode reaction,thereby increasing the discharge capacity of the modified alloy electrode.Electrochemical impedance spectroscopy(EIS)and linear polarization results showed that the Ni-PPy treatment decreased the charge-transfer resistance and increased the exchange current density greatly,far more than the single-component Ni or PPy treatment.Consequently,a notable improvement in high rate dischargeability(HRD)was observed,and at a high discharge current density of 1800 mA/g,the HRD of the modified electrode increased by 10.4%compared with that of the bare electrode.展开更多
文摘Electrochemical dechlorination of chloroform in neutral aqueous solution was investigated using palladium-loaded electrodes at ambient temperature. Palladium/foam-nickel (Pd/foam-Ni) and palladium/polymeric pyrrole film/foam-nickel (Pd/PPy/foam-Ni) composite electrodes which provided catalytic surface for reductive dechlorination of chloroform in aqueous solution were prepared using an electrodepositing method. Scanning electron microscope (SEM) micrographs showed that polymeric pyrrole film modified the electrode-surface characteristics and resulted in the uniform dispersion of needle-shaped palladium particles on foam-Ni supporting electrode. The experimental results of dechlorination indicated that the removal efficiency of chloroform and current efficiency in neutral aqueous solution on Pd/PPy/foam-Ni electrode could be up to 36.8% and 33.0% at dechlorination current of 0.1 mA and dechlorination time of 180 min, which is much higher than that of Pd/foam-Ni electrode.
基金Supported by the National Natural Science Foundation of China(Nos.51571173,51701175,51771164).
文摘In order to improve the electrochemical kinetic performances of La-Mg-Ni-based alloy,complex surface modification of Ni with excellent catalytic activity and conducting polymer polypyrrole(PPy)was performed via electroless plating method.FESEM images revealed that the complex Ni-PPy treatment resulted in more micropores at the alloy surface,with Ni particles and cotton fiber-shape PPy microspheres attached.Both the larger surface area induced by the micropore and the higher catalytic activity and conductivity on account of the dispersed Ni particles/PPy microspheres promoted the electrode reaction,thereby increasing the discharge capacity of the modified alloy electrode.Electrochemical impedance spectroscopy(EIS)and linear polarization results showed that the Ni-PPy treatment decreased the charge-transfer resistance and increased the exchange current density greatly,far more than the single-component Ni or PPy treatment.Consequently,a notable improvement in high rate dischargeability(HRD)was observed,and at a high discharge current density of 1800 mA/g,the HRD of the modified electrode increased by 10.4%compared with that of the bare electrode.