In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performanc...In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performance reliability was examined. The prepared TiO2/Ti composite films showed high photocatalytic activity in the degradation of methylene blue solution. It is obvious that? TiO2/Ti composite films have antibacterial activity under UV irradiation.展开更多
TiO 2 nanoparticles were obtained from industrial TiOSO 4 by hydrolysis method. SnO 2/TiO 2 and SnO 2-TiO 2 composite powders were prepared by stepwise precipitation method and coating method, respectively. The phase ...TiO 2 nanoparticles were obtained from industrial TiOSO 4 by hydrolysis method. SnO 2/TiO 2 and SnO 2-TiO 2 composite powders were prepared by stepwise precipitation method and coating method, respectively. The phase transformation of TiO 2 and the effect of composite mode of SnO 2 on phase transformation of TiO 2 have been investigated by TG-DTA and XRD. The phase transform of pure TiO 2 from anatase to rutile begins at 750 ℃ and the presence of SnO 2 markedly reduces the transform temperature: for coated SnO 2-TiO 2 composite with ω(SnO 2)=20% it was 400 ℃. The SnO 2/TiO 2 composite prepared by precipitation method and followed by calcination at 400 ℃ for 30 min possesses 55% rutile TiO 2. The formation of SnO 2-TiO 2 solid- solution occurrs mainly due to the substitution of Ti 4+ crystal lattice sites by Sn 4+ ions of SnO 2.展开更多
Different semiconductive SiC foam supports were prepared by varying the sintering temperature and atmosphere, and with or without alkaline solution treatment and high temperature oxidation following a macromolecule py...Different semiconductive SiC foam supports were prepared by varying the sintering temperature and atmosphere, and with or without alkaline solution treatment and high temperature oxidation following a macromolecule pyrogenation combined with reaction bonding method. Nano-TiO2 particles were immobilized onto these SiC foam supports by a composite sol-gel method. The phase, surface morphology, the type of conduction and the photocatalytic activity of the TiO2-SiC composite photocatalysts were studied. The TiO2 coated on p-type Si-free SiC support showed the highest photocatalytic efficiency in degradation of 4- aminobenzenesulfonic acid (4-ABS) in aqueous solution as compared to that coated on n-type SiC support and p-type SiC supports with residual Si or Si02 on the surface. The result showed that the TiO2 coatings immobilized on p-type semiconductive SiC foam supports exhibited obviously higher photocatalytic activity in comparison to that coated on n-type SiC foam support. The p-n heterojunctions formed between the p-type SiC supports and n-type TiO2 coatings might be able to account for the better charge separation and transfer as well as the photocatalytic activity of the TiO2-SiC composite photocatalyst.展开更多
文摘In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performance reliability was examined. The prepared TiO2/Ti composite films showed high photocatalytic activity in the degradation of methylene blue solution. It is obvious that? TiO2/Ti composite films have antibacterial activity under UV irradiation.
文摘TiO 2 nanoparticles were obtained from industrial TiOSO 4 by hydrolysis method. SnO 2/TiO 2 and SnO 2-TiO 2 composite powders were prepared by stepwise precipitation method and coating method, respectively. The phase transformation of TiO 2 and the effect of composite mode of SnO 2 on phase transformation of TiO 2 have been investigated by TG-DTA and XRD. The phase transform of pure TiO 2 from anatase to rutile begins at 750 ℃ and the presence of SnO 2 markedly reduces the transform temperature: for coated SnO 2-TiO 2 composite with ω(SnO 2)=20% it was 400 ℃. The SnO 2/TiO 2 composite prepared by precipitation method and followed by calcination at 400 ℃ for 30 min possesses 55% rutile TiO 2. The formation of SnO 2-TiO 2 solid- solution occurrs mainly due to the substitution of Ti 4+ crystal lattice sites by Sn 4+ ions of SnO 2.
基金supported by the National Key Technology R&D Program of China(Grant No.2011BAE03B07)
文摘Different semiconductive SiC foam supports were prepared by varying the sintering temperature and atmosphere, and with or without alkaline solution treatment and high temperature oxidation following a macromolecule pyrogenation combined with reaction bonding method. Nano-TiO2 particles were immobilized onto these SiC foam supports by a composite sol-gel method. The phase, surface morphology, the type of conduction and the photocatalytic activity of the TiO2-SiC composite photocatalysts were studied. The TiO2 coated on p-type Si-free SiC support showed the highest photocatalytic efficiency in degradation of 4- aminobenzenesulfonic acid (4-ABS) in aqueous solution as compared to that coated on n-type SiC support and p-type SiC supports with residual Si or Si02 on the surface. The result showed that the TiO2 coatings immobilized on p-type semiconductive SiC foam supports exhibited obviously higher photocatalytic activity in comparison to that coated on n-type SiC foam support. The p-n heterojunctions formed between the p-type SiC supports and n-type TiO2 coatings might be able to account for the better charge separation and transfer as well as the photocatalytic activity of the TiO2-SiC composite photocatalyst.