The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium ma...The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium matrix composites were prepared by discharge plasma sintering(SPS)and argon protective sintering(APS).The results show that the two processes have a negligible effect on the composition and hardness of the samples,but the hardness of the two samples is significantly improved by adding SiCp.The apparent porosity of SPS process is obviously smaller than that of APS process,whereas,the apparent porosity increases slightly with the addition of SiCp.The oxide layer thickness and mass gain of the samples obtained by SPS process are smaller than those obtained by APS process.The oxide thickness and mass gain of both processes are further reduced by adding SiCp.The SPS composites showed the best high temperature oxidation resistance.Therefore,TMCs with Si Cp by SPS can effectively improve the high-temperature oxidation behavior of the materials.展开更多
Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and...Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials.展开更多
Particulate TiC reinforced 17-4PH and 465 maraging stainless steel matrix composites were processed by conventional powder metallurgy (P/M). TiC-maraging stainless steel composites with theoretical density 〉97% wer...Particulate TiC reinforced 17-4PH and 465 maraging stainless steel matrix composites were processed by conventional powder metallurgy (P/M). TiC-maraging stainless steel composites with theoretical density 〉97% were produced using conventional P/M. The microstructure, and mechanical and wear properties of the composites were evaluated. The microstructure of the composites consisted of (core-rim structure) spherical and semi-spherical TiC particles depending on the wettability of the matrix with TiC particles. In TiC-maraging stainless steel composites, 465 stainless steel binder phase showed good wettability with TiC particles. Some microcracks appeared in the composites, indicating the presence of tensile stresses in the composites produced during sintering. The typical properties, hardness, and bend strength were reported for the composites. After heat treatment and aging, an increase in hardness was observed. The increase in hardness was at- tributed to the aging reaction in maraging stainless steel. The specific wear behavior of the composites strongly depends on the content of TiC particles and their interparticle spacing, and on the heat treatment of the maraging stainless steel.展开更多
In order to uniformly disperse the ceramic reinforcements synthesized in-situ in the copper matrix composites,this study used Carbon Polymer Dot(CPD)as the carbon source and Cu–1.0%Ti alloy powder as the matrix for s...In order to uniformly disperse the ceramic reinforcements synthesized in-situ in the copper matrix composites,this study used Carbon Polymer Dot(CPD)as the carbon source and Cu–1.0%Ti alloy powder as the matrix for supplying Ti source to prepare in-situ synthesized TiC/Cu composites.The results show that TiC nano-precipitates,having the similar particle sizes with the CPD,form at the grains interior and grain boundaries,and maintain a uniform distribution state.Compared with the matrix,0.3 wt%CPD/Cu composite displays the best strengthplastic compatibility,the ultimate tensile strength achieves 385 MPa accompanied with a corresponding elongation of 21%,owing to the dislocation hindrance caused by nano-carbide and excellent interface bonding between nano TiC and the Cu matrix.The density function theory calculation supports our experimental results by showing a tighter and stronger interface contact.This work presents a new approach for studying in-situ carbide precipitates.展开更多
基金Funded by the Key Projects of Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China(No.6140922010201)the Key R&D Plan of Zhenjiang in 2018(No.GY2018021)。
文摘The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium matrix composites were prepared by discharge plasma sintering(SPS)and argon protective sintering(APS).The results show that the two processes have a negligible effect on the composition and hardness of the samples,but the hardness of the two samples is significantly improved by adding SiCp.The apparent porosity of SPS process is obviously smaller than that of APS process,whereas,the apparent porosity increases slightly with the addition of SiCp.The oxide layer thickness and mass gain of the samples obtained by SPS process are smaller than those obtained by APS process.The oxide thickness and mass gain of both processes are further reduced by adding SiCp.The SPS composites showed the best high temperature oxidation resistance.Therefore,TMCs with Si Cp by SPS can effectively improve the high-temperature oxidation behavior of the materials.
基金financial support from the National Key Fundamental Research and Development Project of China (2014CB644002)。
文摘Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials.
文摘Particulate TiC reinforced 17-4PH and 465 maraging stainless steel matrix composites were processed by conventional powder metallurgy (P/M). TiC-maraging stainless steel composites with theoretical density 〉97% were produced using conventional P/M. The microstructure, and mechanical and wear properties of the composites were evaluated. The microstructure of the composites consisted of (core-rim structure) spherical and semi-spherical TiC particles depending on the wettability of the matrix with TiC particles. In TiC-maraging stainless steel composites, 465 stainless steel binder phase showed good wettability with TiC particles. Some microcracks appeared in the composites, indicating the presence of tensile stresses in the composites produced during sintering. The typical properties, hardness, and bend strength were reported for the composites. After heat treatment and aging, an increase in hardness was observed. The increase in hardness was at- tributed to the aging reaction in maraging stainless steel. The specific wear behavior of the composites strongly depends on the content of TiC particles and their interparticle spacing, and on the heat treatment of the maraging stainless steel.
基金supported by the Chinese National Science Foundation(Grant No.52174345,52064032)the Yunnan Science and Technology Projects(Grant No.202002AB080001)Science and Technology Major Project of Yunnan Province(Grant No.202202AG050004).
文摘In order to uniformly disperse the ceramic reinforcements synthesized in-situ in the copper matrix composites,this study used Carbon Polymer Dot(CPD)as the carbon source and Cu–1.0%Ti alloy powder as the matrix for supplying Ti source to prepare in-situ synthesized TiC/Cu composites.The results show that TiC nano-precipitates,having the similar particle sizes with the CPD,form at the grains interior and grain boundaries,and maintain a uniform distribution state.Compared with the matrix,0.3 wt%CPD/Cu composite displays the best strengthplastic compatibility,the ultimate tensile strength achieves 385 MPa accompanied with a corresponding elongation of 21%,owing to the dislocation hindrance caused by nano-carbide and excellent interface bonding between nano TiC and the Cu matrix.The density function theory calculation supports our experimental results by showing a tighter and stronger interface contact.This work presents a new approach for studying in-situ carbide precipitates.