Ni-ZrO2 nanocomposite coatings with monodispersed ZrO2 nanoparticles were prepared from the composite plating bath containing dispersant under DC electrodeposition condition. It is found that the morphology, orientati...Ni-ZrO2 nanocomposite coatings with monodispersed ZrO2 nanoparticles were prepared from the composite plating bath containing dispersant under DC electrodeposition condition. It is found that the morphology, orientation and hardness of the composite coating with monodispersed ZrO2 nanoparticles have lots of difference from the composite coating with agglomerated ZrO2 nanoparticles and pure nickel coating. Especially, the result of hardness shows that only a very low volume fraction (less than 1%) of monodispered ZrO2 nanoparticles in Ni-ZrO2 composite coatings will result in higher hardness of the coating. The hardness of Ni-ZrO2 nanocomposite coatings with monodispersed and agglomerated ZrO2 nanoparticles are HV 529 and HV 393, respectively. The hardness value of the former composite coatings is over 1.3 times higher than that of the later. All these composite coatings are 2 - 3 times higher than that of pure nickel plating (HV 207) prepared under the same conditions.展开更多
In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 na...In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 nanocomposite produced via electrodeposition. We characterized the morphological properties of the composite coatings with a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS). We carried out mechanical examination using a Dura Scan hardness tester and a CERT UMT-2 multi-functional tribological tester. We evaluated the corrosion properties by linear polarization in 3.5% NaCl. The results show that the coatings exhibited good stability and the quantitative particle loading greatly enhanced the structural and morphological properties, hardness behavior and corrosion resistance of the coatings. We observed the precipitation of this alloy on steel is greatly influenced by the composite characteristics.展开更多
Transparent ZrO2-polyurethane nanocomposites with high refractive index were prepared by dispersing ZrO2 nanoparticles in a polyurethane matrix via ligand molecule engineering. TEM showed that the inorganic particles ...Transparent ZrO2-polyurethane nanocomposites with high refractive index were prepared by dispersing ZrO2 nanoparticles in a polyurethane matrix via ligand molecule engineering. TEM showed that the inorganic particles were well dispersed within the polymeric network with no significant macroscopic agglomeration. By controlling the phase separation it was possible to obtain transparent zirconia nanostructured coatings, characterized by improved mechanical and thermal properties. UV-Vis spectra indicated that the coatings still maintained transparency in the visible light. The refractive index of the UV-cured films depends linearly on the ZrO2 content and varies from 1.475 to 1.625 (20 wt%) at 633 nm. These coatings could find advanced applications in coatings of optical and electronic devices.展开更多
This paper describes an investigation of the effect of ZrO2 nanoparticles on the abrasive properties,crystalline texture developments,and tribocorrosion behavior of Ni-P nanostructured coatings.In the investigation,Ni...This paper describes an investigation of the effect of ZrO2 nanoparticles on the abrasive properties,crystalline texture developments,and tribocorrosion behavior of Ni-P nanostructured coatings.In the investigation,Ni-P and Ni-P-ZrO2 nanostructured coatings are deposited on St52 steel via the electroless method.Transmission electron microscopy(TEM),field emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD),energy dispersive spectroscopy(EDS),cyclic-static polarization tests in 3.5wt%NaCl solution,the tribocorrosion test(by back-and-forth wear in electrochemical cell),and the microhardness test using the Vickers method were performed to characterize and analyze the deposited coatings.The results of this study showed that the addition of ZrO2 nanoparticles to the Ni-P electroless bath produced the following:a sharp increase in wear and hardness resistance,the change of the wear mechanism from sheet to adhesive mode,the reduction of pitting corrosion resistance,significant reduction in the tribocorrosion protective properties,change in the preferred orientation of the crystalline texture coating from(111)to(200),increase in the sedimentation rate during the deposit process,and a sharp increase in the thickness of the Ni-P nanostructured coatings.展开更多
Nanocomposite Cr C/hydrogenated amorphous carbon(nc-CrC/a-C:H) coatings were deposited by a hybrid beams system comprised of a hollow cathode ion source and a cathodic arc ion-plating unit with varying H_2 flow rates....Nanocomposite Cr C/hydrogenated amorphous carbon(nc-CrC/a-C:H) coatings were deposited by a hybrid beams system comprised of a hollow cathode ion source and a cathodic arc ion-plating unit with varying H_2 flow rates. The influences of H_2 flow rates on the morphologies, microstructures, and properties of the coatings were systematically studied. The morphologies and microstructures of the coatings were characterized by SEM, AFM, XPS, Raman spectroscopy, GIXRD, and HRTEM. The mechanical and tribological properties were measured by a nano-indenter, scratch tester, and ball-ondisk tribometer. The wear tracks were evaluated using 3D profilometer, optical microscope, and EDS analysis. It has been found that a moderate H_2 flow rate can effectively smooth the surface, enlarge the fraction of a sp^3 bond, and improve the properties. The coating exhibits the highest hardness and elastic modulus at the H_2 flow rate of 40 sccm. A superior combination of adhesion strength,friction coefficient, and wear resistance can be achieved at the H_2 flow rate of 80 sccm.展开更多
A simple electrodeposition technique was used to prepare Ni-CeOnanorods composite coating(Ni-CeONRs) using Watt’s nickel plating bath containing CeOnanorods(NRs) as the reinforcement phase under optimized process con...A simple electrodeposition technique was used to prepare Ni-CeOnanorods composite coating(Ni-CeONRs) using Watt’s nickel plating bath containing CeOnanorods(NRs) as the reinforcement phase under optimized process conditions. The X-ray diffraction analysis(XRD) was used for the structural analysis of Ni-CeONRs composite coatings and their average crystalline size is ~22 nm for pure Ni and ~18 nm,respectively. The crystalline structure is fcc for the Ni-CeOnanocomposite coatings. The surface morphology of the electrodeposited Ni-CeONRs composite coatings was analyzed by scanning electron microscopy(SEM). Microhardness of pure Ni and Ni-CeONRs composite coatings are found to be 253 HV and 824 HV, respectively. The inclusion of CeONRs increases the microhardness of Ni-CeONRs composite coatings. The corrosion resistance behavior of Ni-CeONRs composite coating was evaluated by Tafel polarization and AC impedance methods. It is revealed that CeONRs reinforced Ni matrix shows higher microhardness and corrosion resistance than existing reported electrodeposited pure Ni and CeOnanoparticles reinforced Ni coatings.展开更多
In current work,Ni-Ti-CeO_(2) nanocomposite coatings were achieved by co-adding Ti microparticles and CeO_(2) nanoparticles.Designed experiments and COMSOL computer simulation were applied to reveal the synergistic ro...In current work,Ni-Ti-CeO_(2) nanocomposite coatings were achieved by co-adding Ti microparticles and CeO_(2) nanoparticles.Designed experiments and COMSOL computer simulation were applied to reveal the synergistic role of Ti microparticles and CeO_(2) nanoparticles in tailoring the spatial microstructures and properties of Ni-Ti-CeO_(2) nanocomposite coating.Unilaterally,the conductive Ti microparticles conducted the growth behavior of Ni grains by current density concentration,distorting electronic feld lines and heterogeneous nucleation.Individual domains consisting of inner nanograins and outer radial columnar grains surrounded Ti microparticles,where Ti microparticles acted as seeds.Ti microparticles tended to be aggregated,leading to spatial heterogeneity of microstructures.Ni deposits buried the Ti microparticles in forms of“covering model”,contributing to the formation of inside voids and rough surface and aggregation of Ti microparticles;on the other hand,the non-conductive CeO_(2)microparticles hardly changed the distribution of current density and electronic feld lines on the cathode surface.Ni deposits buried the CeO_(2)microparticle in forms of“stacking model”,avoiding the inside voids and aggregation of particles.The incorporation of CeO_(2)microparticle brought in microstructure evolutions only on its top side without disturbing the growth behavior of Ni grains on its lateral side or bottom,suggesting the limited effects.This was correlated with the presence of current concentration above the CeO_(2) microparticle at the last stage of burying CeO_(2) microparticle.The co-addition of Ti microparticles and CeO_(2) nanoparticles into Ni deposits exploited the complementary action of the two particles,which gave birth to satisfed spatial microstructures and improved hardness.Ti microparticles took major responsibility for microstructure evolutions,while the CeO_(2) nanoparticles were mainly in charge of the microstructure homogeneity.展开更多
A superhydrophobic manganese oxide/polystyrene (MnO2/PS) nanocomposite coating was fabricated by a facile spraying process. The mixture solution of MnO2/PS was poured into a spray gun, and then sprayed onto the copp...A superhydrophobic manganese oxide/polystyrene (MnO2/PS) nanocomposite coating was fabricated by a facile spraying process. The mixture solution of MnO2/PS was poured into a spray gun, and then sprayed onto the copper substrate using 0.2 MPa nitrogen gas to construct superhydrophobic coating. The wettability of the composite coating was measured by sessile drop method. When the weight ratio of MnO2 to PS is 0.5:1, the maximum of contact angle (CA) (140°) is obtained at drying temperature of 180 ℃. As the content of MnO2 increases, the maximum of CA (155°) is achieved at 100 ℃. Surface morphologies and chemical composition were analyzed to understand the effect of the content of MnO2 nanorods and the drying temperature on CA. The results show that the wettability of the coating can be controlled by the content of MnO2 nanorods and the drying temperature. Using the proposed method, the thickness of the coating can be controlled by the spraying times. If damaged, the coating can be repaired just by spraying the mixture solution again.展开更多
Newly synthesized functional nanoparticles,3-amino-1,2,4-triazole(ATA)/SiO_(2)—TiO_(2)were introduced to the polyurethane(PU)matrix.Electrochemical techniques were used to investigate the barrier properties of the sy...Newly synthesized functional nanoparticles,3-amino-1,2,4-triazole(ATA)/SiO_(2)—TiO_(2)were introduced to the polyurethane(PU)matrix.Electrochemical techniques were used to investigate the barrier properties of the synthesized PU—ATA/SiO_(2)—TiO_(2)nanocomposite coated steel specimen.In natural seawater,electrochemical impedance spectroscopy experiments indicated outstanding protective behaviour for the PU—ATA/SiO_(2)—TiO_(2)coated steel.The coating resistance(Rcoat)of PU—ATA/SiO_(2)—TiO_(2)was determined to be 2956.90 kΩ·cm^(−2).The Rcoat of the PU—ATA/SiO_(2)—TiO_(2)nanocomposite coating was found to be over 50%higher than the PU coating.The current measured along the scratched surface of the PU—ATA/SiO_(2)—TiO_(2)coating was found to be very low(1.65 nA).The enhanced ATA/SiO_(2)—TiO_(2)nanoparticles inhibited the entry of electrolytes into the coating interface,as revealed by scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray diffraction analysis of the degradation products.Water contact angle testing validated the hydrophobic nature of the PU—ATA/SiO_(2)—TiO_(2)coating(θ=115.4°).When the concentration of ATA/SiO_(2)—TiO_(2)nanoparticles was 2 wt%,dynamic mechanical analysis revealed better mechanical properties.Therefore,the newly synthesised PU—ATA/SiO_(2)—TiO_(2)nanocomposite provided excellent barrier and mechanical properties due to the addition of ATA/SiO_(2)—TiO_(2)nanoparticles to the polyurethane,which inhibited material degradation and aided in the prolongation of the coated steel’s life.展开更多
Conversion/alloying anode materials exhibiting high K storage capacities suffer from large volume variations and unstable electrode/electrolyte interfaces upon cycling.Herein,taking SnS/reduced graphene oxide(SnS/rGO)...Conversion/alloying anode materials exhibiting high K storage capacities suffer from large volume variations and unstable electrode/electrolyte interfaces upon cycling.Herein,taking SnS/reduced graphene oxide(SnS/rGO)anodes as an example,the electrochemical performance of SnS/rGO could significantly be improved via employing potassium bis(fluorosulfonyl)imide(KFSI)salt in electrolytes and ultrathin TiO_(2) coating.KF-rich inorganic layer was demonstrated to help form robust SEI layer,which could suppress the side reactions to increase the Coulombic efficiency.The formed potassiated K_(x)TiO_(2) coating layer was constructed to boost charge transfer capability and K-ion diffusion kinetics.The as-prepared SnS/rGO@TiO_(2)-20 electrode in KFSI electrolyte delivers the high CE of 99.1%and 424 mAh·g^(−1) after 200 cycles with an ultrahigh capacity retention of 98.5%.展开更多
文摘Ni-ZrO2 nanocomposite coatings with monodispersed ZrO2 nanoparticles were prepared from the composite plating bath containing dispersant under DC electrodeposition condition. It is found that the morphology, orientation and hardness of the composite coating with monodispersed ZrO2 nanoparticles have lots of difference from the composite coating with agglomerated ZrO2 nanoparticles and pure nickel coating. Especially, the result of hardness shows that only a very low volume fraction (less than 1%) of monodispered ZrO2 nanoparticles in Ni-ZrO2 composite coatings will result in higher hardness of the coating. The hardness of Ni-ZrO2 nanocomposite coatings with monodispersed and agglomerated ZrO2 nanoparticles are HV 529 and HV 393, respectively. The hardness value of the former composite coatings is over 1.3 times higher than that of the later. All these composite coatings are 2 - 3 times higher than that of pure nickel plating (HV 207) prepared under the same conditions.
基金financial support of National Research Foundation and effort by the Surface Engineering Research Centre (SERC)
文摘In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 nanocomposite produced via electrodeposition. We characterized the morphological properties of the composite coatings with a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS). We carried out mechanical examination using a Dura Scan hardness tester and a CERT UMT-2 multi-functional tribological tester. We evaluated the corrosion properties by linear polarization in 3.5% NaCl. The results show that the coatings exhibited good stability and the quantitative particle loading greatly enhanced the structural and morphological properties, hardness behavior and corrosion resistance of the coatings. We observed the precipitation of this alloy on steel is greatly influenced by the composite characteristics.
基金supported by the Shanghai Leading Academic Discipline Project(No.B 113)
文摘Transparent ZrO2-polyurethane nanocomposites with high refractive index were prepared by dispersing ZrO2 nanoparticles in a polyurethane matrix via ligand molecule engineering. TEM showed that the inorganic particles were well dispersed within the polymeric network with no significant macroscopic agglomeration. By controlling the phase separation it was possible to obtain transparent zirconia nanostructured coatings, characterized by improved mechanical and thermal properties. UV-Vis spectra indicated that the coatings still maintained transparency in the visible light. The refractive index of the UV-cured films depends linearly on the ZrO2 content and varies from 1.475 to 1.625 (20 wt%) at 633 nm. These coatings could find advanced applications in coatings of optical and electronic devices.
文摘This paper describes an investigation of the effect of ZrO2 nanoparticles on the abrasive properties,crystalline texture developments,and tribocorrosion behavior of Ni-P nanostructured coatings.In the investigation,Ni-P and Ni-P-ZrO2 nanostructured coatings are deposited on St52 steel via the electroless method.Transmission electron microscopy(TEM),field emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD),energy dispersive spectroscopy(EDS),cyclic-static polarization tests in 3.5wt%NaCl solution,the tribocorrosion test(by back-and-forth wear in electrochemical cell),and the microhardness test using the Vickers method were performed to characterize and analyze the deposited coatings.The results of this study showed that the addition of ZrO2 nanoparticles to the Ni-P electroless bath produced the following:a sharp increase in wear and hardness resistance,the change of the wear mechanism from sheet to adhesive mode,the reduction of pitting corrosion resistance,significant reduction in the tribocorrosion protective properties,change in the preferred orientation of the crystalline texture coating from(111)to(200),increase in the sedimentation rate during the deposit process,and a sharp increase in the thickness of the Ni-P nanostructured coatings.
基金supported by the National Natural Science Foundation of China(Nos.11275141 and 11175133)the International Cooperation Program of the Ministry of Science and Technology of China(No.2015DFR00720)+2 种基金the Center for Electron Microscopy of Wuhan Universitythe Center of Nanosci. and Nanotech,Research of Wuhan Universitythe Analysis and Test Center of Wuhan University
文摘Nanocomposite Cr C/hydrogenated amorphous carbon(nc-CrC/a-C:H) coatings were deposited by a hybrid beams system comprised of a hollow cathode ion source and a cathodic arc ion-plating unit with varying H_2 flow rates. The influences of H_2 flow rates on the morphologies, microstructures, and properties of the coatings were systematically studied. The morphologies and microstructures of the coatings were characterized by SEM, AFM, XPS, Raman spectroscopy, GIXRD, and HRTEM. The mechanical and tribological properties were measured by a nano-indenter, scratch tester, and ball-ondisk tribometer. The wear tracks were evaluated using 3D profilometer, optical microscope, and EDS analysis. It has been found that a moderate H_2 flow rate can effectively smooth the surface, enlarge the fraction of a sp^3 bond, and improve the properties. The coating exhibits the highest hardness and elastic modulus at the H_2 flow rate of 40 sccm. A superior combination of adhesion strength,friction coefficient, and wear resistance can be achieved at the H_2 flow rate of 80 sccm.
基金Project supported by UGC-DAE Consortium for Scientific Research,Indore-452 017,India(CSR-KN/CRS-47/2013-14/647)
文摘A simple electrodeposition technique was used to prepare Ni-CeOnanorods composite coating(Ni-CeONRs) using Watt’s nickel plating bath containing CeOnanorods(NRs) as the reinforcement phase under optimized process conditions. The X-ray diffraction analysis(XRD) was used for the structural analysis of Ni-CeONRs composite coatings and their average crystalline size is ~22 nm for pure Ni and ~18 nm,respectively. The crystalline structure is fcc for the Ni-CeOnanocomposite coatings. The surface morphology of the electrodeposited Ni-CeONRs composite coatings was analyzed by scanning electron microscopy(SEM). Microhardness of pure Ni and Ni-CeONRs composite coatings are found to be 253 HV and 824 HV, respectively. The inclusion of CeONRs increases the microhardness of Ni-CeONRs composite coatings. The corrosion resistance behavior of Ni-CeONRs composite coating was evaluated by Tafel polarization and AC impedance methods. It is revealed that CeONRs reinforced Ni matrix shows higher microhardness and corrosion resistance than existing reported electrodeposited pure Ni and CeOnanoparticles reinforced Ni coatings.
文摘In current work,Ni-Ti-CeO_(2) nanocomposite coatings were achieved by co-adding Ti microparticles and CeO_(2) nanoparticles.Designed experiments and COMSOL computer simulation were applied to reveal the synergistic role of Ti microparticles and CeO_(2) nanoparticles in tailoring the spatial microstructures and properties of Ni-Ti-CeO_(2) nanocomposite coating.Unilaterally,the conductive Ti microparticles conducted the growth behavior of Ni grains by current density concentration,distorting electronic feld lines and heterogeneous nucleation.Individual domains consisting of inner nanograins and outer radial columnar grains surrounded Ti microparticles,where Ti microparticles acted as seeds.Ti microparticles tended to be aggregated,leading to spatial heterogeneity of microstructures.Ni deposits buried the Ti microparticles in forms of“covering model”,contributing to the formation of inside voids and rough surface and aggregation of Ti microparticles;on the other hand,the non-conductive CeO_(2)microparticles hardly changed the distribution of current density and electronic feld lines on the cathode surface.Ni deposits buried the CeO_(2)microparticle in forms of“stacking model”,avoiding the inside voids and aggregation of particles.The incorporation of CeO_(2)microparticle brought in microstructure evolutions only on its top side without disturbing the growth behavior of Ni grains on its lateral side or bottom,suggesting the limited effects.This was correlated with the presence of current concentration above the CeO_(2) microparticle at the last stage of burying CeO_(2) microparticle.The co-addition of Ti microparticles and CeO_(2) nanoparticles into Ni deposits exploited the complementary action of the two particles,which gave birth to satisfed spatial microstructures and improved hardness.Ti microparticles took major responsibility for microstructure evolutions,while the CeO_(2) nanoparticles were mainly in charge of the microstructure homogeneity.
基金The authors acknowledge the financial support of the National Science Foundation of China (Grant No. 50773089 and Grant No.51002162) and the National 973 Proj ect of China (Grant No. 2007CB607601).
文摘A superhydrophobic manganese oxide/polystyrene (MnO2/PS) nanocomposite coating was fabricated by a facile spraying process. The mixture solution of MnO2/PS was poured into a spray gun, and then sprayed onto the copper substrate using 0.2 MPa nitrogen gas to construct superhydrophobic coating. The wettability of the composite coating was measured by sessile drop method. When the weight ratio of MnO2 to PS is 0.5:1, the maximum of contact angle (CA) (140°) is obtained at drying temperature of 180 ℃. As the content of MnO2 increases, the maximum of CA (155°) is achieved at 100 ℃. Surface morphologies and chemical composition were analyzed to understand the effect of the content of MnO2 nanorods and the drying temperature on CA. The results show that the wettability of the coating can be controlled by the content of MnO2 nanorods and the drying temperature. Using the proposed method, the thickness of the coating can be controlled by the spraying times. If damaged, the coating can be repaired just by spraying the mixture solution again.
文摘Newly synthesized functional nanoparticles,3-amino-1,2,4-triazole(ATA)/SiO_(2)—TiO_(2)were introduced to the polyurethane(PU)matrix.Electrochemical techniques were used to investigate the barrier properties of the synthesized PU—ATA/SiO_(2)—TiO_(2)nanocomposite coated steel specimen.In natural seawater,electrochemical impedance spectroscopy experiments indicated outstanding protective behaviour for the PU—ATA/SiO_(2)—TiO_(2)coated steel.The coating resistance(Rcoat)of PU—ATA/SiO_(2)—TiO_(2)was determined to be 2956.90 kΩ·cm^(−2).The Rcoat of the PU—ATA/SiO_(2)—TiO_(2)nanocomposite coating was found to be over 50%higher than the PU coating.The current measured along the scratched surface of the PU—ATA/SiO_(2)—TiO_(2)coating was found to be very low(1.65 nA).The enhanced ATA/SiO_(2)—TiO_(2)nanoparticles inhibited the entry of electrolytes into the coating interface,as revealed by scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray diffraction analysis of the degradation products.Water contact angle testing validated the hydrophobic nature of the PU—ATA/SiO_(2)—TiO_(2)coating(θ=115.4°).When the concentration of ATA/SiO_(2)—TiO_(2)nanoparticles was 2 wt%,dynamic mechanical analysis revealed better mechanical properties.Therefore,the newly synthesised PU—ATA/SiO_(2)—TiO_(2)nanocomposite provided excellent barrier and mechanical properties due to the addition of ATA/SiO_(2)—TiO_(2)nanoparticles to the polyurethane,which inhibited material degradation and aided in the prolongation of the coated steel’s life.
基金the Fundamental Research Funds for the Central Universities(Nos.19CX05002A and 17CX02039A)the Project of Science and Technology of Chongzuo City(FA2020008)+2 种基金the Key Research and Development Plan of Shandong Province(2018GGX102017)the New Faculty Start-up Funding in the China University of Petroleum(East China)(YJ201601023)the Special Project Fund of“Taishan Scholars”of Shandong Province(ts201511017).
文摘Conversion/alloying anode materials exhibiting high K storage capacities suffer from large volume variations and unstable electrode/electrolyte interfaces upon cycling.Herein,taking SnS/reduced graphene oxide(SnS/rGO)anodes as an example,the electrochemical performance of SnS/rGO could significantly be improved via employing potassium bis(fluorosulfonyl)imide(KFSI)salt in electrolytes and ultrathin TiO_(2) coating.KF-rich inorganic layer was demonstrated to help form robust SEI layer,which could suppress the side reactions to increase the Coulombic efficiency.The formed potassiated K_(x)TiO_(2) coating layer was constructed to boost charge transfer capability and K-ion diffusion kinetics.The as-prepared SnS/rGO@TiO_(2)-20 electrode in KFSI electrolyte delivers the high CE of 99.1%and 424 mAh·g^(−1) after 200 cycles with an ultrahigh capacity retention of 98.5%.