期刊文献+
共找到66,834篇文章
< 1 2 250 >
每页显示 20 50 100
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 被引量:3
1
作者 Hui Xu Shufeng Yang +4 位作者 Enhui Wang Yunsong Liu Chunyu Guo Xinmei Hou Yanling Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期138-145,共8页
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm... A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted. 展开更多
关键词 ni-based superalloy GH4738 extreme temperature competitive oxidation oxidation mechanism oxidation kinetics
下载PDF
Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition 被引量:7
2
作者 Chuan Guo Gan Li +8 位作者 Sheng Li Xiaogang Hu Hongxing Lu Xinggang Li Zhen Xu Yuhan Chen Qingqing Li Jian Lu Qiang Zhu 《Nano Materials Science》 EI CAS CSCD 2023年第1期53-77,共25页
The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in hig... The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems.However,the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states,inevitably leading to severe metallurgical defects in Ni-based superalloys.Cracks are the greatest threat to these materials’integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure.Consequently,there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking,as this knowledge will enable the wider application of these unique materials.To this end,this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM.In addition,several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components. 展开更多
关键词 Additive manufacturing ni-based superalloys Residual stress Mechanisms of crack formation Methods of crack inhibition
下载PDF
Improvement strategies for Ni-based alcohol steam reforming catalysts 被引量:1
3
作者 Alex Desgagnés Ommolbanin Alizadeh Sahraei Maria C.Iliuta 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期447-479,I0010,共34页
Steam reforming(SR)of fossil methane is already a well-known,documented and established expertise in the industrial sector as it accounts for the vast majority of global hydrogen production.From a sustainable developm... Steam reforming(SR)of fossil methane is already a well-known,documented and established expertise in the industrial sector as it accounts for the vast majority of global hydrogen production.From a sustainable development perspective,hydrogen production by SR of biomass-derived feedstock represents a promising alternative that could help to lower the carbon footprint of the traditional process.In this regard,bio-alcohols such as methanol,ethanol or glycerol are among the attractive candidates that could serve as green hydrogen carriers as they decompose at relatively low temperatures in the presence of water compared to methane,allowing for improved H_(2)yields.However,significant challenges remain regarding the activity and stability of nickel-based catalysts,which are most widely used in alcohol SR processes due to their affordability and ability to break C–C,O–H and C–H bonds,yet are prone to rapid deactivation primarily caused by coke deposition and metal particle sintering.In this state-of-the-art review,a portfolio of strategies to improve the performance of Ni-based catalysts used in alcohol SR processes is unfolded with the intent of pinpointing the critical issues in catalyst development.Close examination of the literature reveals that the efforts tackling these recurring issues can be directed at the active metal,either by tuning Ni dispersion and Ni-support interactions or by targeting synergistic effects in bimetallic systems,while others focus on the support,either by modifying acid-base character,oxygen mobility,or by embedding Ni in specific crystallographic structures.This review provides a very useful tool to orient future work in catalyst development. 展开更多
关键词 H2 production Alcohol steam reforming ni-based catalysts Catalyst development SINTERING Coke formation
下载PDF
基于SYSWELD的等高齿弧锥齿轮铣刀盘多层焊接数值模拟
4
作者 王志刚 张鑫鹏 《工具技术》 北大核心 2024年第8期123-126,共4页
本文借助Visual-Environment焊接模拟仿真软件,以SYSWELD为求解器对等高齿弧锥齿轮铣刀盘V形坡口多层焊接的焊接温度场进行数值模拟,得到了焊接温度场分布云图,分析并对比了每层焊缝中心、焊趾及距焊缝中心5mm处的温度循环曲线,推导出... 本文借助Visual-Environment焊接模拟仿真软件,以SYSWELD为求解器对等高齿弧锥齿轮铣刀盘V形坡口多层焊接的焊接温度场进行数值模拟,得到了焊接温度场分布云图,分析并对比了每层焊缝中心、焊趾及距焊缝中心5mm处的温度循环曲线,推导出三层焊接温度场公式用于计算验证。结果表明,熔池中心温度最高,距离焊缝中心越近,温度梯度变化越大。 展开更多
关键词 SYSweld 铣刀盘 温度场 多层焊接 V形坡口
下载PDF
Transformation mechanism of secondary phase and its effect on intergranular corrosion in laser wire filling welding Ni-based alloy/304 stainless steel 被引量:6
5
作者 Bo CHENG Dong-jiang WU +2 位作者 Chao ZHANG Dong-sheng CHAI Guang-yi MA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期715-725,共11页
To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was an... To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was analyzed by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM).The evaluation of intergranular corrosion resistance of the welded joints was conducted by double-loop electrochemical potentiokinetic reactivation(DL-EPR) method,and at the same time the chemical compositions of the corrosion surface were analyzed by energy-dispersive spectrometry (EDS).The results show that p phase has complete coherence relationship withμphase,and the coherent relationship is described as[001]p//■and[430]p//[0001]μ.Theμphase is rapidly transformed from p phase,which is the inhomogeneous phase transformation.The transformation of secondary phase will increase the susceptibility to intergranular corrosion.Therefore,the transformation of secondary phase should be avoided in the welding process. 展开更多
关键词 phase transformation intergranular corrosion secondary phase ni-based alloy dissimilar metal laser welding
下载PDF
Microstructure and mechanical characterization of Incoloy 825 Ni-based alloy welded to 2507 super duplex stainless steel through dissimilar friction stir welding 被引量:5
6
作者 Jalal KANGAZIAN Morteza SHAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第8期1677-1688,共12页
The feasibility of dissimilar friction stir welding(FSW)between the SAF 2507 super duplex stainless steel and the Incoloy825 Ni-based superalloy was evaluated.The microstructure and mechanical behavior of the weldment... The feasibility of dissimilar friction stir welding(FSW)between the SAF 2507 super duplex stainless steel and the Incoloy825 Ni-based superalloy was evaluated.The microstructure and mechanical behavior of the weldments were examined too.The results showed that the alloys were successfully welded together by positioning the SAF 2507 on the advancing side.The nuggets displayed higher hardness than the base metals,due to the occurrence of dynamic recrystallization and the subsequent refinement of the microstructures.The welded sample obtained the similar strength to the Incoloy 825 parent metal,showing the ductile fracture mode after the tensile tests by SEM.Moreover,the weld zone(31 J)exhibited higher and lower toughness than the Incoloy 825(23 J)and SAF 2507(42 J)parent metals,respectively.Based on the obtained results,the FSW method could be recommended to weld the super duplex stainless steel/Ni-based superalloy joints. 展开更多
关键词 friction stir welding dissimilar welds nickel stainless steel MICROSTRUCTURE mechanical property
下载PDF
EFFECT OF CARBON MIGRATION ON CREEP PROPERTIES OF Cr5Mo DISSIMILAR WELDED JOINTS WITH Ni-BASED AND AUSTENITIC WELD METAL 被引量:3
7
作者 J.M.Gong Y.Jiang S.T.Tu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期560-568,共9页
In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Nil3 (A302) austenitic weld metal was investigated. Carbon migration near the wel... In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Nil3 (A302) austenitic weld metal was investigated. Carbon migration near the weld metal/ferritic steel interface of Cr5Mo dissimilar welded joints was analyzed by aging method. Local creep deformations of the dissimilar welded joints were measured by a long-term local creep deformation measuring technique. The creep rupture testing was performed for Cr5Mo dissimilar welded joints with Inconel 182 and A302 weld metal. The research results show that the maximum creep strain rate occurs in the decarburized zone located on heat affect zone (HAZ) of Cr5Mo ferritic steel. The creep rupture life of Cr5Mo dissimilar welded joints with A 302 weld metal decreases due to carbon migration and is about 50% of that welded with Inconel 182 weld metal. 展开更多
关键词 dissimilar welded joint carbon migration creep rupture localized deformation
下载PDF
Active straining engineering on self-assembled stacked Ni-based hybrid electrode for ultra-low overpotential
8
作者 Shujie Liu Rui-Ting Gao +3 位作者 Xianhu Liu Xueyuan Zhang Limin Wu Lei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期217-226,I0006,共11页
Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stac... Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stacked deposition strategy to in situ activation and reconstruction of NiO/NiOOH on Ni matrix,following with the migration of Fe ions to NiOOH.The Fe sites on the Ni/NiO/NiOOH facilitate the formation of the stable*OH oxygenated intermediates,and the Ni matrix in the catalyst provides the catalyst excellent stability.The oxygen evolution reaction(OER)performance of the stacked NiFe-5 with compressive strain displays the strengthened binding to oxygenated intermediates and superior OER activity,the ultralow overpotentials of 162 versus reversible hydrogen electrode at 10 mA cm^(-2).On the other hand,the Ni-5 without the incorporation of Fe has shown an outstanding hydrogen evolution reaction(HER)activity,affording an overpotential of 47 mV at 10 mA cm^(-2).The NiFe-5‖Ni-5 enables the overall water splitting at a voltage of 1.508 V to achieve 20 mA cm^(-2) with remarkable durability.The stacked deposition strategy improves binding strength of Ni-based catalysts to oxygenated intermediates via generating compressive strain,causing high catalytic activities on OER and HER. 展开更多
关键词 ni-based catalysts Self-assembly stacked structure Ultra-low overpotential Water splitting
下载PDF
Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys 被引量:1
9
作者 Zongli Yi Jiguo Shan +2 位作者 Yue Zhao Zhenlin Zhang Aiping Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1072-1088,共17页
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ... Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary. 展开更多
关键词 nickel-based superalloy fusion welding liquation cracking cracking mechanism cracking suppression
下载PDF
A review of linear friction welding of Ni -based superalloys
10
作者 Xiawei Yang Tingxi Meng +6 位作者 Qiang Chu Yu Su Zhenguo Guo Rui Xu Wenlong Fan Tiejun Ma Wenya Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1382-1391,共10页
Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,... Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,fatigue resistance,and high-temperature strength.Linear friction welding(LFW)is a new joining technology with near-net-forming characteristics that can be used for the manu-facture and repair of a wide range of aerospace components.This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation,microstructures,mechanical proper-ties,flash morphology,residual stresses,creep,and fatigue of Ni-based superalloy weldments produced with LFW to enable future optim-um utilization of the LFW process. 展开更多
关键词 ni-based superalloys linear friction welding MICROSTRUCTURES mechanical properties flash morphology
下载PDF
Frequency Domain Fatigue Evaluation on SCR Girth-Weld Based on Structural Stress 被引量:1
11
作者 ZHANG Long ZHAO Tian-feng 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期255-270,共16页
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t... The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR. 展开更多
关键词 SCR girth weld random vibration self(cross)power spectrum structural stress method biaxial fatigue damage
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal
12
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE Creep strain MICROSTRUCTURE Failure mechanism Creep life
下载PDF
Dual-System Activation of Ni-Base Superalloy under High Strain and High Temperature
13
作者 Alexandru Lopazan Alberto W. Mello 《Open Journal of Applied Sciences》 2023年第12期2320-2328,共9页
Due to their superior combination of heat resistance, high temperature corrosion resistance, toughness and strength, nickel-based superalloys have become of extensive use in the aerospace industry. This research aims ... Due to their superior combination of heat resistance, high temperature corrosion resistance, toughness and strength, nickel-based superalloys have become of extensive use in the aerospace industry. This research aims to explain why the fatigue life of Inconel-718 in preconditioned samples had larger fatigue lives than pristine samples. The hypothesis is that preconditioning at 700°C and 1.0% strain could lead to thermal activation of the {100} cubic slip plane alongside the {111} octahedral slip plane, potentially improving fatigue life. Using SEM and EBSD imaging, the microstructure of Inconel-718 samples were characterized before and after preconditioning. The directions of the slip bands that formed following the preconditioning were determined. The result was that the existence of both the cubic and octahedral slip systems was confirmed, leading to the thermal activation hypothesized. The existence of both slip planes was considered to be the reason behind the improved fatigue life due to better strain accommodation within the microstructure. It is suggested that focuses for future research includes conducting in-situ observation of slip activation and the application of preconditioning as a manufacturing method. 展开更多
关键词 Metal Fatigue ni-based Superalloys Cube Slip Microstructure High Temperature
下载PDF
Design of Fully Automatic Specification Selection System for Resistance Welding Equipment
14
作者 Xiangkun Lu Zengtai Tian +1 位作者 Hao Xu Yue Guo 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期64-68,共5页
A system for fully automatic selection of welding specifications in resistance welding equipment has been developed to address the problem of workers frequently choosing the wrong specifications during manual welding ... A system for fully automatic selection of welding specifications in resistance welding equipment has been developed to address the problem of workers frequently choosing the wrong specifications during manual welding of multiple parts on a single machine in automobile factories. The system incorporates an automatic recognition system for different workpiece materials using the added machine fixture,visual detection system for nuts and bolts,and secondary graphical confirmation to ensure the correctness of specification calling. This system achieves reliable,fully automatic selection of welding specifications in resistance welding equipment and has shown significant effects in improving welding quality for massproduced workpieces,while solving the problem of specification calling errors that can occur with traditional methods involving process charts and code adjustments. This system is particularly suitable for promoting applications in manual welding of multiple parts on a single machine in automobile factories,ensuring correct specification calling and welding quality. 展开更多
关键词 seat spot welding welding specifications fully automatic
下载PDF
Theoretical analysis of the elastic Kelvin-Helmholtz instability in explosive weldings
15
作者 Yuanbo Sun Jianning Gou +5 位作者 Cheng Wang Qiang Zhou Rui Liu Pengwan Chen Tonghui Yang Xiang Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期521-528,共8页
By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the el... By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations. 展开更多
关键词 Explosive welding Hydrodynamic instabilities ELASTICITY
下载PDF
Improvement of Microstructure and Mechanical Properties of Rapid Cooling Friction Stir-welded A1050 Pure Aluminum
16
作者 许楠 LIU Lutao +2 位作者 SONG Qining ZHAO Jianhua BAO Yefeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期134-141,共8页
Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were inves... Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were investigated by electron backscatter diffraction characterization, Vickers hardness measurements, and tensile testing. The results showed that liquid CO_(2) coolant significantly reduced the peak temperature and increased the cooling rate, so the rapidly cooled FSW joint exhibited fine grains with a large number of dislocations. The grain refinement mechanism of the FSW A1050 pure aluminum joint was primarily attributed to the combined effects of continuous dynamic recrystallization, grain subdivision, and geometric dynamic recrystallization. Compared with conventional FSW, the yield strength, ultimate tensile strength, and fracture elongation of rapidly cooled FSW joint were significantly enhanced, and the welding efficiency was increased from 80% to 93%. The enhanced mechanical properties and improved synergy of strength and ductility were obtained due to the increased dislocation density and remarkable grain refinement. The wear of the tool can produce several WC particles retained in the joint, and the contribution of second phase strengthening to the enhanced strength should not be ignored. 展开更多
关键词 aluminum alloy friction stir welding RECRYSTALLIZATION microstructure mechanical properties
下载PDF
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding
17
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
下载PDF
Intermetallic Compounds Formation in Dissimilar Friction Stir Welding of Mg/Cu Alloys
18
作者 Xue Li Qingzhen Zhao +2 位作者 Hao Su Ji Chen Chuansong Wu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第9期1523-1532,共10页
Joining dissimilar Mg/Cu alloys was still an intractable problem because of the excessive intermetallic compounds(IMCs)and poor mechanical properties using conventional welding methods.In the present study,friction st... Joining dissimilar Mg/Cu alloys was still an intractable problem because of the excessive intermetallic compounds(IMCs)and poor mechanical properties using conventional welding methods.In the present study,friction stir welding was employed for the butt joining of dissimilar AZ31B Mg-alloy and T2 pure Cu plates.Defect-free Mg/Cu joints were obtained with Mg-RS and Cu-AS configuration,at a welding speed of 50 mm/min and tool rotating speeds of 325 r/min,625 r/min and 925 r/min.At the joining interface,both Mg_(2)Cu and MgCu_(2) IMC phases were observed,with a clear,uniform and continuous IMCs layer composed of two sub-layers,layer-A of Mg+Mg_(2)Cu and layer-B of Mg_(2)Cu+MgCu_(2).The maximum ultimate tensile strength of the Mg/Cu friction stir welding joint reached 130 MPa at 925 r/min due to enhanced mechanical interlocking between Mg and Cu,as well as sufficient metallurgical bonding at the joining interface with an IMCs layer thickness in the range of 1.0-2.0μm. 展开更多
关键词 Friction stir welding MAGNESIUM COPPER Intermetallic compounds Mechanical properties
原文传递
MD Simulation of Diffusion Behaviors in Collision Welding Processes of Al-Cu, Al-Al, Cu-Cu
19
作者 Dingyi Jin Guo Wei 《Computers, Materials & Continua》 SCIE EI 2024年第6期3455-3468,共14页
To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,... To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,Al-Al and Cu-Cu combinations fabricated through collision welding using molecular dynamic(MD)simulation.The atomic diffusion behaviors are compared between similar metal combinations(Al-Al,Cu-Cu)and dissimilar metal combinations(Al-Cu).By combining the simulation results and classical diffusion theory,the diffusion coefficients for similar and dissimilar metal material combinations under different velocity conditions are obtained.The effects of material combinations and collision velocity on diffusion behaviors are also discussed.The diffusion behaviors of dissimilar material combinations strongly depend on the transverse velocity,whereas those of the similar material combinations are more dependent on the longitudinal velocity.These findings can provide guidance for optimizing welding parameters. 展开更多
关键词 Atomic diffusion behavior molecular dynamics collision welding
下载PDF
Microstructure homogeneity and mechanical properties of laser-arc hybrid welded AZ31B magnesium alloy
20
作者 Yongkang Gao Kangda Hao +4 位作者 Lianyong Xu Yongdian Han Lei Zhao Wenjing Ren Hongyang Jing 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1986-1995,共10页
Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that lase... Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics. 展开更多
关键词 Magnesium alloy Laser-arc hybrid welding Microstructure homogeneity Mechanical properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部